MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsinvgd Structured version   Visualization version   GIF version

Theorem prdsinvgd 18930
Description: Negation in a product of groups. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsgrpd.y 𝑌 = (𝑆Xs𝑅)
prdsgrpd.i (𝜑𝐼𝑊)
prdsgrpd.s (𝜑𝑆𝑉)
prdsgrpd.r (𝜑𝑅:𝐼⟶Grp)
prdsinvgd.b 𝐵 = (Base‘𝑌)
prdsinvgd.n 𝑁 = (invg𝑌)
prdsinvgd.x (𝜑𝑋𝐵)
Assertion
Ref Expression
prdsinvgd (𝜑 → (𝑁𝑋) = (𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑁(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem prdsinvgd
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 prdsgrpd.y . . . . 5 𝑌 = (𝑆Xs𝑅)
2 prdsinvgd.b . . . . 5 𝐵 = (Base‘𝑌)
3 eqid 2729 . . . . 5 (+g𝑌) = (+g𝑌)
4 prdsgrpd.s . . . . . 6 (𝜑𝑆𝑉)
54elexd 3460 . . . . 5 (𝜑𝑆 ∈ V)
6 prdsgrpd.i . . . . . 6 (𝜑𝐼𝑊)
76elexd 3460 . . . . 5 (𝜑𝐼 ∈ V)
8 prdsgrpd.r . . . . 5 (𝜑𝑅:𝐼⟶Grp)
9 prdsinvgd.x . . . . 5 (𝜑𝑋𝐵)
10 eqid 2729 . . . . 5 (0g𝑅) = (0g𝑅)
11 eqid 2729 . . . . 5 (𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥))) = (𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥)))
121, 2, 3, 5, 7, 8, 9, 10, 11prdsinvlem 18928 . . . 4 (𝜑 → ((𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥))) ∈ 𝐵 ∧ ((𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥)))(+g𝑌)𝑋) = (0g𝑅)))
1312simprd 495 . . 3 (𝜑 → ((𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥)))(+g𝑌)𝑋) = (0g𝑅))
14 grpmnd 18819 . . . . . 6 (𝑎 ∈ Grp → 𝑎 ∈ Mnd)
1514ssriv 3939 . . . . 5 Grp ⊆ Mnd
16 fss 6668 . . . . 5 ((𝑅:𝐼⟶Grp ∧ Grp ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
178, 15, 16sylancl 586 . . . 4 (𝜑𝑅:𝐼⟶Mnd)
181, 6, 4, 17prds0g 18645 . . 3 (𝜑 → (0g𝑅) = (0g𝑌))
1913, 18eqtrd 2764 . 2 (𝜑 → ((𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥)))(+g𝑌)𝑋) = (0g𝑌))
201, 6, 4, 8prdsgrpd 18929 . . 3 (𝜑𝑌 ∈ Grp)
2112simpld 494 . . 3 (𝜑 → (𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥))) ∈ 𝐵)
22 eqid 2729 . . . 4 (0g𝑌) = (0g𝑌)
23 prdsinvgd.n . . . 4 𝑁 = (invg𝑌)
242, 3, 22, 23grpinvid2 18871 . . 3 ((𝑌 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥))) ∈ 𝐵) → ((𝑁𝑋) = (𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥))) ↔ ((𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥)))(+g𝑌)𝑋) = (0g𝑌)))
2520, 9, 21, 24syl3anc 1373 . 2 (𝜑 → ((𝑁𝑋) = (𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥))) ↔ ((𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥)))(+g𝑌)𝑋) = (0g𝑌)))
2619, 25mpbird 257 1 (𝜑 → (𝑁𝑋) = (𝑥𝐼 ↦ ((invg‘(𝑅𝑥))‘(𝑋𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903  cmpt 5173  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Xscprds 17349  Mndcmnd 18608  Grpcgrp 18812  invgcminusg 18813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816
This theorem is referenced by:  pwsinvg  18932  prdsinvgd2  21649  prdstgpd  24010
  Copyright terms: Public domain W3C validator