Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdsinvgd | Structured version Visualization version GIF version |
Description: Negation in a product of groups. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
prdsgrpd.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsgrpd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsgrpd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsgrpd.r | ⊢ (𝜑 → 𝑅:𝐼⟶Grp) |
prdsinvgd.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsinvgd.n | ⊢ 𝑁 = (invg‘𝑌) |
prdsinvgd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
prdsinvgd | ⊢ (𝜑 → (𝑁‘𝑋) = (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsgrpd.y | . . . . 5 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | prdsinvgd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
3 | eqid 2736 | . . . . 5 ⊢ (+g‘𝑌) = (+g‘𝑌) | |
4 | prdsgrpd.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
5 | 4 | elexd 3460 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ V) |
6 | prdsgrpd.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
7 | 6 | elexd 3460 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ V) |
8 | prdsgrpd.r | . . . . 5 ⊢ (𝜑 → 𝑅:𝐼⟶Grp) | |
9 | prdsinvgd.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | eqid 2736 | . . . . 5 ⊢ (0g ∘ 𝑅) = (0g ∘ 𝑅) | |
11 | eqid 2736 | . . . . 5 ⊢ (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥))) | |
12 | 1, 2, 3, 5, 7, 8, 9, 10, 11 | prdsinvlem 18757 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥))) ∈ 𝐵 ∧ ((𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))(+g‘𝑌)𝑋) = (0g ∘ 𝑅))) |
13 | 12 | simprd 496 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))(+g‘𝑌)𝑋) = (0g ∘ 𝑅)) |
14 | grpmnd 18657 | . . . . . 6 ⊢ (𝑎 ∈ Grp → 𝑎 ∈ Mnd) | |
15 | 14 | ssriv 3934 | . . . . 5 ⊢ Grp ⊆ Mnd |
16 | fss 6654 | . . . . 5 ⊢ ((𝑅:𝐼⟶Grp ∧ Grp ⊆ Mnd) → 𝑅:𝐼⟶Mnd) | |
17 | 8, 15, 16 | sylancl 586 | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
18 | 1, 6, 4, 17 | prds0g 18493 | . . 3 ⊢ (𝜑 → (0g ∘ 𝑅) = (0g‘𝑌)) |
19 | 13, 18 | eqtrd 2776 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))(+g‘𝑌)𝑋) = (0g‘𝑌)) |
20 | 1, 6, 4, 8 | prdsgrpd 18758 | . . 3 ⊢ (𝜑 → 𝑌 ∈ Grp) |
21 | 12 | simpld 495 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥))) ∈ 𝐵) |
22 | eqid 2736 | . . . 4 ⊢ (0g‘𝑌) = (0g‘𝑌) | |
23 | prdsinvgd.n | . . . 4 ⊢ 𝑁 = (invg‘𝑌) | |
24 | 2, 3, 22, 23 | grpinvid2 18704 | . . 3 ⊢ ((𝑌 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥))) ∈ 𝐵) → ((𝑁‘𝑋) = (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥))) ↔ ((𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))(+g‘𝑌)𝑋) = (0g‘𝑌))) |
25 | 20, 9, 21, 24 | syl3anc 1370 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥))) ↔ ((𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))(+g‘𝑌)𝑋) = (0g‘𝑌))) |
26 | 19, 25 | mpbird 256 | 1 ⊢ (𝜑 → (𝑁‘𝑋) = (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 Vcvv 3440 ⊆ wss 3896 ↦ cmpt 5169 ∘ ccom 5611 ⟶wf 6461 ‘cfv 6465 (class class class)co 7316 Basecbs 16986 +gcplusg 17036 0gc0g 17224 Xscprds 17230 Mndcmnd 18459 Grpcgrp 18650 invgcminusg 18651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-tp 4575 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-map 8666 df-ixp 8735 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-sup 9277 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-dec 12517 df-uz 12662 df-fz 13319 df-struct 16922 df-slot 16957 df-ndx 16969 df-base 16987 df-plusg 17049 df-mulr 17050 df-sca 17052 df-vsca 17053 df-ip 17054 df-tset 17055 df-ple 17056 df-ds 17058 df-hom 17060 df-cco 17061 df-0g 17226 df-prds 17232 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-grp 18653 df-minusg 18654 |
This theorem is referenced by: pwsinvg 18761 prdsinvgd2 21029 prdstgpd 23356 |
Copyright terms: Public domain | W3C validator |