MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrneg Structured version   Visualization version   GIF version

Theorem psrneg 19894
Description: The negative function of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
psrneg.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrneg.i 𝑁 = (invg𝑅)
psrneg.b 𝐵 = (Base‘𝑆)
psrneg.m 𝑀 = (invg𝑆)
psrneg.x (𝜑𝑋𝐵)
Assertion
Ref Expression
psrneg (𝜑 → (𝑀𝑋) = (𝑁𝑋))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝑀(𝑓)   𝑁(𝑓)   𝑉(𝑓)   𝑋(𝑓)

Proof of Theorem psrneg
StepHypRef Expression
1 psrgrp.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 psrgrp.i . . . 4 (𝜑𝐼𝑉)
3 psrgrp.r . . . 4 (𝜑𝑅 ∈ Grp)
4 psrneg.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 psrneg.i . . . 4 𝑁 = (invg𝑅)
6 psrneg.b . . . 4 𝐵 = (Base‘𝑆)
7 psrneg.x . . . 4 (𝜑𝑋𝐵)
8 eqid 2779 . . . 4 (0g𝑅) = (0g𝑅)
9 eqid 2779 . . . 4 (+g𝑆) = (+g𝑆)
101, 2, 3, 4, 5, 6, 7, 8, 9psrlinv 19891 . . 3 (𝜑 → ((𝑁𝑋)(+g𝑆)𝑋) = (𝐷 × {(0g𝑅)}))
11 eqid 2779 . . . 4 (0g𝑆) = (0g𝑆)
121, 2, 3, 4, 8, 11psr0 19893 . . 3 (𝜑 → (0g𝑆) = (𝐷 × {(0g𝑅)}))
1310, 12eqtr4d 2818 . 2 (𝜑 → ((𝑁𝑋)(+g𝑆)𝑋) = (0g𝑆))
141, 2, 3psrgrp 19892 . . 3 (𝜑𝑆 ∈ Grp)
151, 2, 3, 4, 5, 6, 7psrnegcl 19890 . . 3 (𝜑 → (𝑁𝑋) ∈ 𝐵)
16 psrneg.m . . . 4 𝑀 = (invg𝑆)
176, 9, 11, 16grpinvid2 17942 . . 3 ((𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵) → ((𝑀𝑋) = (𝑁𝑋) ↔ ((𝑁𝑋)(+g𝑆)𝑋) = (0g𝑆)))
1814, 7, 15, 17syl3anc 1351 . 2 (𝜑 → ((𝑀𝑋) = (𝑁𝑋) ↔ ((𝑁𝑋)(+g𝑆)𝑋) = (0g𝑆)))
1913, 18mpbird 249 1 (𝜑 → (𝑀𝑋) = (𝑁𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1507  wcel 2050  {crab 3093  {csn 4441   × cxp 5405  ccnv 5406  cima 5410  ccom 5411  cfv 6188  (class class class)co 6976  𝑚 cmap 8206  Fincfn 8306  cn 11439  0cn0 11707  Basecbs 16339  +gcplusg 16421  0gc0g 16569  Grpcgrp 17891  invgcminusg 17892   mPwSer cmps 19845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-om 7397  df-1st 7501  df-2nd 7502  df-supp 7634  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-map 8208  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fsupp 8629  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-uz 12059  df-fz 12709  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-plusg 16434  df-mulr 16435  df-sca 16437  df-vsca 16438  df-tset 16440  df-0g 16571  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-grp 17894  df-minusg 17895  df-psr 19850
This theorem is referenced by:  mplsubglem  19928  mhpinvcl  20045
  Copyright terms: Public domain W3C validator