Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrneg Structured version   Visualization version   GIF version

Theorem psrneg 20638
 Description: The negative function of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
psrneg.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrneg.i 𝑁 = (invg𝑅)
psrneg.b 𝐵 = (Base‘𝑆)
psrneg.m 𝑀 = (invg𝑆)
psrneg.x (𝜑𝑋𝐵)
Assertion
Ref Expression
psrneg (𝜑 → (𝑀𝑋) = (𝑁𝑋))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝑀(𝑓)   𝑁(𝑓)   𝑉(𝑓)   𝑋(𝑓)

Proof of Theorem psrneg
StepHypRef Expression
1 psrgrp.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 psrgrp.i . . . 4 (𝜑𝐼𝑉)
3 psrgrp.r . . . 4 (𝜑𝑅 ∈ Grp)
4 psrneg.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 psrneg.i . . . 4 𝑁 = (invg𝑅)
6 psrneg.b . . . 4 𝐵 = (Base‘𝑆)
7 psrneg.x . . . 4 (𝜑𝑋𝐵)
8 eqid 2798 . . . 4 (0g𝑅) = (0g𝑅)
9 eqid 2798 . . . 4 (+g𝑆) = (+g𝑆)
101, 2, 3, 4, 5, 6, 7, 8, 9psrlinv 20635 . . 3 (𝜑 → ((𝑁𝑋)(+g𝑆)𝑋) = (𝐷 × {(0g𝑅)}))
11 eqid 2798 . . . 4 (0g𝑆) = (0g𝑆)
121, 2, 3, 4, 8, 11psr0 20637 . . 3 (𝜑 → (0g𝑆) = (𝐷 × {(0g𝑅)}))
1310, 12eqtr4d 2836 . 2 (𝜑 → ((𝑁𝑋)(+g𝑆)𝑋) = (0g𝑆))
141, 2, 3psrgrp 20636 . . 3 (𝜑𝑆 ∈ Grp)
151, 2, 3, 4, 5, 6, 7psrnegcl 20634 . . 3 (𝜑 → (𝑁𝑋) ∈ 𝐵)
16 psrneg.m . . . 4 𝑀 = (invg𝑆)
176, 9, 11, 16grpinvid2 18147 . . 3 ((𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵) → ((𝑀𝑋) = (𝑁𝑋) ↔ ((𝑁𝑋)(+g𝑆)𝑋) = (0g𝑆)))
1814, 7, 15, 17syl3anc 1368 . 2 (𝜑 → ((𝑀𝑋) = (𝑁𝑋) ↔ ((𝑁𝑋)(+g𝑆)𝑋) = (0g𝑆)))
1913, 18mpbird 260 1 (𝜑 → (𝑀𝑋) = (𝑁𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2111  {crab 3110  {csn 4525   × cxp 5517  ◡ccnv 5518   “ cima 5522   ∘ ccom 5523  ‘cfv 6324  (class class class)co 7135   ↑m cmap 8389  Fincfn 8492  ℕcn 11625  ℕ0cn0 11885  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Grpcgrp 18095  invgcminusg 18096   mPwSer cmps 20589 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-psr 20594 This theorem is referenced by:  mplsubglem  20672  mplneg  20681
 Copyright terms: Public domain W3C validator