Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psgneldm2 | Structured version Visualization version GIF version |
Description: The finitary permutations are the span of the transpositions. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
Ref | Expression |
---|---|
psgnval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
psgnval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgneldm2 | ⊢ (𝐷 ∈ 𝑉 → (𝑃 ∈ dom 𝑁 ↔ ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnval.g | . . . . . 6 ⊢ 𝐺 = (SymGrp‘𝐷) | |
2 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | eqid 2736 | . . . . . 6 ⊢ {𝑝 ∈ (Base‘𝐺) ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ (Base‘𝐺) ∣ dom (𝑝 ∖ I ) ∈ Fin} | |
4 | psgnval.n | . . . . . 6 ⊢ 𝑁 = (pmSgn‘𝐷) | |
5 | 1, 2, 3, 4 | psgnfn 19182 | . . . . 5 ⊢ 𝑁 Fn {𝑝 ∈ (Base‘𝐺) ∣ dom (𝑝 ∖ I ) ∈ Fin} |
6 | 5 | fndmi 6575 | . . . 4 ⊢ dom 𝑁 = {𝑝 ∈ (Base‘𝐺) ∣ dom (𝑝 ∖ I ) ∈ Fin} |
7 | psgnval.t | . . . . . 6 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
8 | eqid 2736 | . . . . . 6 ⊢ (mrCls‘(SubMnd‘𝐺)) = (mrCls‘(SubMnd‘𝐺)) | |
9 | 7, 1, 2, 8 | symggen 19151 | . . . . 5 ⊢ (𝐷 ∈ 𝑉 → ((mrCls‘(SubMnd‘𝐺))‘𝑇) = {𝑝 ∈ (Base‘𝐺) ∣ dom (𝑝 ∖ I ) ∈ Fin}) |
10 | 1 | symggrp 19081 | . . . . . . 7 ⊢ (𝐷 ∈ 𝑉 → 𝐺 ∈ Grp) |
11 | 10 | grpmndd 18662 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → 𝐺 ∈ Mnd) |
12 | 7, 1, 2 | symgtrf 19150 | . . . . . 6 ⊢ 𝑇 ⊆ (Base‘𝐺) |
13 | 2, 8 | gsumwspan 18558 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺)) → ((mrCls‘(SubMnd‘𝐺))‘𝑇) = ran (𝑤 ∈ Word 𝑇 ↦ (𝐺 Σg 𝑤))) |
14 | 11, 12, 13 | sylancl 586 | . . . . 5 ⊢ (𝐷 ∈ 𝑉 → ((mrCls‘(SubMnd‘𝐺))‘𝑇) = ran (𝑤 ∈ Word 𝑇 ↦ (𝐺 Σg 𝑤))) |
15 | 9, 14 | eqtr3d 2778 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → {𝑝 ∈ (Base‘𝐺) ∣ dom (𝑝 ∖ I ) ∈ Fin} = ran (𝑤 ∈ Word 𝑇 ↦ (𝐺 Σg 𝑤))) |
16 | 6, 15 | eqtrid 2788 | . . 3 ⊢ (𝐷 ∈ 𝑉 → dom 𝑁 = ran (𝑤 ∈ Word 𝑇 ↦ (𝐺 Σg 𝑤))) |
17 | 16 | eleq2d 2822 | . 2 ⊢ (𝐷 ∈ 𝑉 → (𝑃 ∈ dom 𝑁 ↔ 𝑃 ∈ ran (𝑤 ∈ Word 𝑇 ↦ (𝐺 Σg 𝑤)))) |
18 | eqid 2736 | . . 3 ⊢ (𝑤 ∈ Word 𝑇 ↦ (𝐺 Σg 𝑤)) = (𝑤 ∈ Word 𝑇 ↦ (𝐺 Σg 𝑤)) | |
19 | ovex 7349 | . . 3 ⊢ (𝐺 Σg 𝑤) ∈ V | |
20 | 18, 19 | elrnmpti 5888 | . 2 ⊢ (𝑃 ∈ ran (𝑤 ∈ Word 𝑇 ↦ (𝐺 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤)) |
21 | 17, 20 | bitrdi 286 | 1 ⊢ (𝐷 ∈ 𝑉 → (𝑃 ∈ dom 𝑁 ↔ ∃𝑤 ∈ Word 𝑇𝑃 = (𝐺 Σg 𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 {crab 3403 ∖ cdif 3893 ⊆ wss 3896 ↦ cmpt 5169 I cid 5505 dom cdm 5607 ran crn 5608 ‘cfv 6465 (class class class)co 7316 Fincfn 8782 Word cword 14295 Basecbs 16986 Σg cgsu 17225 mrClscmrc 17366 Mndcmnd 18459 SubMndcsubmnd 18503 SymGrpcsymg 19047 pmTrspcpmtr 19122 pmSgncpsgn 19170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-tp 4575 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-2o 8346 df-er 8547 df-map 8666 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-uz 12662 df-fz 13319 df-fzo 13462 df-seq 13801 df-hash 14124 df-word 14296 df-concat 14352 df-s1 14378 df-struct 16922 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-plusg 17049 df-tset 17055 df-0g 17226 df-gsum 17227 df-mre 17369 df-mrc 17370 df-acs 17372 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-submnd 18505 df-efmnd 18581 df-grp 18653 df-minusg 18654 df-subg 18825 df-symg 19048 df-pmtr 19123 df-psgn 19172 |
This theorem is referenced by: psgneldm2i 19186 psgneu 19187 |
Copyright terms: Public domain | W3C validator |