MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnghm Structured version   Visualization version   GIF version

Theorem psgnghm 21621
Description: The sign is a homomorphism from the finitary permutation group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnghm.s 𝑆 = (SymGrp‘𝐷)
psgnghm.n 𝑁 = (pmSgn‘𝐷)
psgnghm.f 𝐹 = (𝑆s dom 𝑁)
psgnghm.u 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})
Assertion
Ref Expression
psgnghm (𝐷𝑉𝑁 ∈ (𝐹 GrpHom 𝑈))

Proof of Theorem psgnghm
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnghm.s . . . . . 6 𝑆 = (SymGrp‘𝐷)
2 eqid 2740 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2740 . . . . . 6 {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
4 psgnghm.n . . . . . 6 𝑁 = (pmSgn‘𝐷)
51, 2, 3, 4psgnfn 19543 . . . . 5 𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
65fndmi 6683 . . . 4 dom 𝑁 = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
76ssrab3 4105 . . 3 dom 𝑁 ⊆ (Base‘𝑆)
8 psgnghm.f . . . 4 𝐹 = (𝑆s dom 𝑁)
98, 2ressbas2 17296 . . 3 (dom 𝑁 ⊆ (Base‘𝑆) → dom 𝑁 = (Base‘𝐹))
107, 9ax-mp 5 . 2 dom 𝑁 = (Base‘𝐹)
11 psgnghm.u . . 3 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})
1211cnmsgnbas 21619 . 2 {1, -1} = (Base‘𝑈)
1310fvexi 6934 . . 3 dom 𝑁 ∈ V
14 eqid 2740 . . . 4 (+g𝑆) = (+g𝑆)
158, 14ressplusg 17349 . . 3 (dom 𝑁 ∈ V → (+g𝑆) = (+g𝐹))
1613, 15ax-mp 5 . 2 (+g𝑆) = (+g𝐹)
17 prex 5452 . . 3 {1, -1} ∈ V
18 eqid 2740 . . . . 5 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
19 cnfldmul 21395 . . . . 5 · = (.r‘ℂfld)
2018, 19mgpplusg 20165 . . . 4 · = (+g‘(mulGrp‘ℂfld))
2111, 20ressplusg 17349 . . 3 ({1, -1} ∈ V → · = (+g𝑈))
2217, 21ax-mp 5 . 2 · = (+g𝑈)
231, 4psgndmsubg 19544 . . 3 (𝐷𝑉 → dom 𝑁 ∈ (SubGrp‘𝑆))
248subggrp 19169 . . 3 (dom 𝑁 ∈ (SubGrp‘𝑆) → 𝐹 ∈ Grp)
2523, 24syl 17 . 2 (𝐷𝑉𝐹 ∈ Grp)
2611cnmsgngrp 21620 . . 3 𝑈 ∈ Grp
2726a1i 11 . 2 (𝐷𝑉𝑈 ∈ Grp)
28 fnfun 6679 . . . . . 6 (𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} → Fun 𝑁)
295, 28ax-mp 5 . . . . 5 Fun 𝑁
30 funfn 6608 . . . . 5 (Fun 𝑁𝑁 Fn dom 𝑁)
3129, 30mpbi 230 . . . 4 𝑁 Fn dom 𝑁
3231a1i 11 . . 3 (𝐷𝑉𝑁 Fn dom 𝑁)
33 eqid 2740 . . . . . 6 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
341, 33, 4psgnvali 19550 . . . . 5 (𝑥 ∈ dom 𝑁 → ∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))))
35 lencl 14581 . . . . . . . . . 10 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → (♯‘𝑧) ∈ ℕ0)
3635nn0zd 12665 . . . . . . . . 9 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → (♯‘𝑧) ∈ ℤ)
37 m1expcl2 14136 . . . . . . . . . 10 ((♯‘𝑧) ∈ ℤ → (-1↑(♯‘𝑧)) ∈ {-1, 1})
38 prcom 4757 . . . . . . . . . 10 {-1, 1} = {1, -1}
3937, 38eleqtrdi 2854 . . . . . . . . 9 ((♯‘𝑧) ∈ ℤ → (-1↑(♯‘𝑧)) ∈ {1, -1})
40 eleq1a 2839 . . . . . . . . 9 ((-1↑(♯‘𝑧)) ∈ {1, -1} → ((𝑁𝑥) = (-1↑(♯‘𝑧)) → (𝑁𝑥) ∈ {1, -1}))
4136, 39, 403syl 18 . . . . . . . 8 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → ((𝑁𝑥) = (-1↑(♯‘𝑧)) → (𝑁𝑥) ∈ {1, -1}))
4241adantld 490 . . . . . . 7 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → ((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) → (𝑁𝑥) ∈ {1, -1}))
4342rexlimiv 3154 . . . . . 6 (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) → (𝑁𝑥) ∈ {1, -1})
4443a1i 11 . . . . 5 (𝐷𝑉 → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) → (𝑁𝑥) ∈ {1, -1}))
4534, 44syl5 34 . . . 4 (𝐷𝑉 → (𝑥 ∈ dom 𝑁 → (𝑁𝑥) ∈ {1, -1}))
4645ralrimiv 3151 . . 3 (𝐷𝑉 → ∀𝑥 ∈ dom 𝑁(𝑁𝑥) ∈ {1, -1})
47 ffnfv 7153 . . 3 (𝑁:dom 𝑁⟶{1, -1} ↔ (𝑁 Fn dom 𝑁 ∧ ∀𝑥 ∈ dom 𝑁(𝑁𝑥) ∈ {1, -1}))
4832, 46, 47sylanbrc 582 . 2 (𝐷𝑉𝑁:dom 𝑁⟶{1, -1})
49 ccatcl 14622 . . . . . . 7 ((𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷)) → (𝑧 ++ 𝑤) ∈ Word ran (pmTrsp‘𝐷))
501, 33, 4psgnvalii 19551 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ++ 𝑤) ∈ Word ran (pmTrsp‘𝐷)) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (-1↑(♯‘(𝑧 ++ 𝑤))))
5149, 50sylan2 592 . . . . . 6 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (-1↑(♯‘(𝑧 ++ 𝑤))))
521symggrp 19442 . . . . . . . . . 10 (𝐷𝑉𝑆 ∈ Grp)
5352grpmndd 18986 . . . . . . . . 9 (𝐷𝑉𝑆 ∈ Mnd)
5433, 1, 2symgtrf 19511 . . . . . . . . . . 11 ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆)
55 sswrd 14570 . . . . . . . . . . 11 (ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆) → Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆))
5654, 55ax-mp 5 . . . . . . . . . 10 Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆)
5756sseli 4004 . . . . . . . . 9 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → 𝑧 ∈ Word (Base‘𝑆))
5856sseli 4004 . . . . . . . . 9 (𝑤 ∈ Word ran (pmTrsp‘𝐷) → 𝑤 ∈ Word (Base‘𝑆))
592, 14gsumccat 18876 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝑧 ∈ Word (Base‘𝑆) ∧ 𝑤 ∈ Word (Base‘𝑆)) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
6053, 57, 58, 59syl3an 1160 . . . . . . . 8 ((𝐷𝑉𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷)) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
61603expb 1120 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
6261fveq2d 6924 . . . . . 6 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))))
63 ccatlen 14623 . . . . . . . . 9 ((𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷)) → (♯‘(𝑧 ++ 𝑤)) = ((♯‘𝑧) + (♯‘𝑤)))
6463adantl 481 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (♯‘(𝑧 ++ 𝑤)) = ((♯‘𝑧) + (♯‘𝑤)))
6564oveq2d 7464 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (-1↑(♯‘(𝑧 ++ 𝑤))) = (-1↑((♯‘𝑧) + (♯‘𝑤))))
66 neg1cn 12407 . . . . . . . . 9 -1 ∈ ℂ
6766a1i 11 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → -1 ∈ ℂ)
68 lencl 14581 . . . . . . . . 9 (𝑤 ∈ Word ran (pmTrsp‘𝐷) → (♯‘𝑤) ∈ ℕ0)
6968ad2antll 728 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (♯‘𝑤) ∈ ℕ0)
7035ad2antrl 727 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (♯‘𝑧) ∈ ℕ0)
7167, 69, 70expaddd 14198 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (-1↑((♯‘𝑧) + (♯‘𝑤))) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤))))
7265, 71eqtrd 2780 . . . . . 6 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (-1↑(♯‘(𝑧 ++ 𝑤))) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤))))
7351, 62, 723eqtr3d 2788 . . . . 5 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤))))
74 oveq12 7457 . . . . . . . 8 ((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) → (𝑥(+g𝑆)𝑦) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
7574fveq2d 6924 . . . . . . 7 ((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) → (𝑁‘(𝑥(+g𝑆)𝑦)) = (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))))
76 oveq12 7457 . . . . . . 7 (((𝑁𝑥) = (-1↑(♯‘𝑧)) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤))) → ((𝑁𝑥) · (𝑁𝑦)) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤))))
7775, 76eqeqan12d 2754 . . . . . 6 (((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) ∧ ((𝑁𝑥) = (-1↑(♯‘𝑧)) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))) → ((𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦)) ↔ (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤)))))
7877an4s 659 . . . . 5 (((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))) → ((𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦)) ↔ (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤)))))
7973, 78syl5ibrcom 247 . . . 4 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))) → (𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦))))
8079rexlimdvva 3219 . . 3 (𝐷𝑉 → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))) → (𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦))))
811, 33, 4psgnvali 19550 . . . . 5 (𝑦 ∈ dom 𝑁 → ∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤))))
8234, 81anim12i 612 . . . 4 ((𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁) → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ ∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))))
83 reeanv 3235 . . . 4 (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))) ↔ (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ ∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))))
8482, 83sylibr 234 . . 3 ((𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁) → ∃𝑧 ∈ Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))))
8580, 84impel 505 . 2 ((𝐷𝑉 ∧ (𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁)) → (𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦)))
8610, 12, 16, 22, 25, 27, 48, 85isghmd 19265 1 (𝐷𝑉𝑁 ∈ (𝐹 GrpHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  wss 3976  {cpr 4650   I cid 5592  dom cdm 5700  ran crn 5701  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  1c1 11185   + caddc 11187   · cmul 11189  -cneg 11521  0cn0 12553  cz 12639  cexp 14112  chash 14379  Word cword 14562   ++ cconcat 14618  Basecbs 17258  s cress 17287  +gcplusg 17311   Σg cgsu 17500  Mndcmnd 18772  Grpcgrp 18973  SubGrpcsubg 19160   GrpHom cghm 19252  SymGrpcsymg 19410  pmTrspcpmtr 19483  pmSgncpsgn 19531  mulGrpcmgp 20161  fldccnfld 21387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-reverse 14807  df-s2 14897  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-efmnd 18904  df-grp 18976  df-minusg 18977  df-subg 19163  df-ghm 19253  df-gim 19299  df-oppg 19386  df-symg 19411  df-pmtr 19484  df-psgn 19533  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-drng 20753  df-cnfld 21388
This theorem is referenced by:  psgnghm2  21622  evpmss  21627
  Copyright terms: Public domain W3C validator