| Step | Hyp | Ref
| Expression |
| 1 | | psgnghm.s |
. . . . . 6
⊢ 𝑆 = (SymGrp‘𝐷) |
| 2 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 3 | | eqid 2737 |
. . . . . 6
⊢ {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} =
{𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈
Fin} |
| 4 | | psgnghm.n |
. . . . . 6
⊢ 𝑁 = (pmSgn‘𝐷) |
| 5 | 1, 2, 3, 4 | psgnfn 19519 |
. . . . 5
⊢ 𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} |
| 6 | 5 | fndmi 6672 |
. . . 4
⊢ dom 𝑁 = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} |
| 7 | 6 | ssrab3 4082 |
. . 3
⊢ dom 𝑁 ⊆ (Base‘𝑆) |
| 8 | | psgnghm.f |
. . . 4
⊢ 𝐹 = (𝑆 ↾s dom 𝑁) |
| 9 | 8, 2 | ressbas2 17283 |
. . 3
⊢ (dom
𝑁 ⊆ (Base‘𝑆) → dom 𝑁 = (Base‘𝐹)) |
| 10 | 7, 9 | ax-mp 5 |
. 2
⊢ dom 𝑁 = (Base‘𝐹) |
| 11 | | psgnghm.u |
. . 3
⊢ 𝑈 =
((mulGrp‘ℂfld) ↾s {1,
-1}) |
| 12 | 11 | cnmsgnbas 21596 |
. 2
⊢ {1, -1} =
(Base‘𝑈) |
| 13 | 10 | fvexi 6920 |
. . 3
⊢ dom 𝑁 ∈ V |
| 14 | | eqid 2737 |
. . . 4
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 15 | 8, 14 | ressplusg 17334 |
. . 3
⊢ (dom
𝑁 ∈ V →
(+g‘𝑆) =
(+g‘𝐹)) |
| 16 | 13, 15 | ax-mp 5 |
. 2
⊢
(+g‘𝑆) = (+g‘𝐹) |
| 17 | | prex 5437 |
. . 3
⊢ {1, -1}
∈ V |
| 18 | | eqid 2737 |
. . . . 5
⊢
(mulGrp‘ℂfld) =
(mulGrp‘ℂfld) |
| 19 | | cnfldmul 21372 |
. . . . 5
⊢ ·
= (.r‘ℂfld) |
| 20 | 18, 19 | mgpplusg 20141 |
. . . 4
⊢ ·
= (+g‘(mulGrp‘ℂfld)) |
| 21 | 11, 20 | ressplusg 17334 |
. . 3
⊢ ({1, -1}
∈ V → · = (+g‘𝑈)) |
| 22 | 17, 21 | ax-mp 5 |
. 2
⊢ ·
= (+g‘𝑈) |
| 23 | 1, 4 | psgndmsubg 19520 |
. . 3
⊢ (𝐷 ∈ 𝑉 → dom 𝑁 ∈ (SubGrp‘𝑆)) |
| 24 | 8 | subggrp 19147 |
. . 3
⊢ (dom
𝑁 ∈
(SubGrp‘𝑆) →
𝐹 ∈
Grp) |
| 25 | 23, 24 | syl 17 |
. 2
⊢ (𝐷 ∈ 𝑉 → 𝐹 ∈ Grp) |
| 26 | 11 | cnmsgngrp 21597 |
. . 3
⊢ 𝑈 ∈ Grp |
| 27 | 26 | a1i 11 |
. 2
⊢ (𝐷 ∈ 𝑉 → 𝑈 ∈ Grp) |
| 28 | | fnfun 6668 |
. . . . . 6
⊢ (𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} → Fun 𝑁) |
| 29 | 5, 28 | ax-mp 5 |
. . . . 5
⊢ Fun 𝑁 |
| 30 | | funfn 6596 |
. . . . 5
⊢ (Fun
𝑁 ↔ 𝑁 Fn dom 𝑁) |
| 31 | 29, 30 | mpbi 230 |
. . . 4
⊢ 𝑁 Fn dom 𝑁 |
| 32 | 31 | a1i 11 |
. . 3
⊢ (𝐷 ∈ 𝑉 → 𝑁 Fn dom 𝑁) |
| 33 | | eqid 2737 |
. . . . . 6
⊢ ran
(pmTrsp‘𝐷) = ran
(pmTrsp‘𝐷) |
| 34 | 1, 33, 4 | psgnvali 19526 |
. . . . 5
⊢ (𝑥 ∈ dom 𝑁 → ∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁‘𝑥) = (-1↑(♯‘𝑧)))) |
| 35 | | lencl 14571 |
. . . . . . . . . 10
⊢ (𝑧 ∈ Word ran
(pmTrsp‘𝐷) →
(♯‘𝑧) ∈
ℕ0) |
| 36 | 35 | nn0zd 12639 |
. . . . . . . . 9
⊢ (𝑧 ∈ Word ran
(pmTrsp‘𝐷) →
(♯‘𝑧) ∈
ℤ) |
| 37 | | m1expcl2 14126 |
. . . . . . . . . 10
⊢
((♯‘𝑧)
∈ ℤ → (-1↑(♯‘𝑧)) ∈ {-1, 1}) |
| 38 | | prcom 4732 |
. . . . . . . . . 10
⊢ {-1, 1} =
{1, -1} |
| 39 | 37, 38 | eleqtrdi 2851 |
. . . . . . . . 9
⊢
((♯‘𝑧)
∈ ℤ → (-1↑(♯‘𝑧)) ∈ {1, -1}) |
| 40 | | eleq1a 2836 |
. . . . . . . . 9
⊢
((-1↑(♯‘𝑧)) ∈ {1, -1} → ((𝑁‘𝑥) = (-1↑(♯‘𝑧)) → (𝑁‘𝑥) ∈ {1, -1})) |
| 41 | 36, 39, 40 | 3syl 18 |
. . . . . . . 8
⊢ (𝑧 ∈ Word ran
(pmTrsp‘𝐷) →
((𝑁‘𝑥) =
(-1↑(♯‘𝑧))
→ (𝑁‘𝑥) ∈ {1,
-1})) |
| 42 | 41 | adantld 490 |
. . . . . . 7
⊢ (𝑧 ∈ Word ran
(pmTrsp‘𝐷) →
((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁‘𝑥) = (-1↑(♯‘𝑧))) → (𝑁‘𝑥) ∈ {1, -1})) |
| 43 | 42 | rexlimiv 3148 |
. . . . . 6
⊢
(∃𝑧 ∈
Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁‘𝑥) = (-1↑(♯‘𝑧))) → (𝑁‘𝑥) ∈ {1, -1}) |
| 44 | 43 | a1i 11 |
. . . . 5
⊢ (𝐷 ∈ 𝑉 → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁‘𝑥) = (-1↑(♯‘𝑧))) → (𝑁‘𝑥) ∈ {1, -1})) |
| 45 | 34, 44 | syl5 34 |
. . . 4
⊢ (𝐷 ∈ 𝑉 → (𝑥 ∈ dom 𝑁 → (𝑁‘𝑥) ∈ {1, -1})) |
| 46 | 45 | ralrimiv 3145 |
. . 3
⊢ (𝐷 ∈ 𝑉 → ∀𝑥 ∈ dom 𝑁(𝑁‘𝑥) ∈ {1, -1}) |
| 47 | | ffnfv 7139 |
. . 3
⊢ (𝑁:dom 𝑁⟶{1, -1} ↔ (𝑁 Fn dom 𝑁 ∧ ∀𝑥 ∈ dom 𝑁(𝑁‘𝑥) ∈ {1, -1})) |
| 48 | 32, 46, 47 | sylanbrc 583 |
. 2
⊢ (𝐷 ∈ 𝑉 → 𝑁:dom 𝑁⟶{1, -1}) |
| 49 | | ccatcl 14612 |
. . . . . . 7
⊢ ((𝑧 ∈ Word ran
(pmTrsp‘𝐷) ∧
𝑤 ∈ Word ran
(pmTrsp‘𝐷)) →
(𝑧 ++ 𝑤) ∈ Word ran (pmTrsp‘𝐷)) |
| 50 | 1, 33, 4 | psgnvalii 19527 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ (𝑧 ++ 𝑤) ∈ Word ran (pmTrsp‘𝐷)) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (-1↑(♯‘(𝑧 ++ 𝑤)))) |
| 51 | 49, 50 | sylan2 593 |
. . . . . 6
⊢ ((𝐷 ∈ 𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (-1↑(♯‘(𝑧 ++ 𝑤)))) |
| 52 | 1 | symggrp 19418 |
. . . . . . . . . 10
⊢ (𝐷 ∈ 𝑉 → 𝑆 ∈ Grp) |
| 53 | 52 | grpmndd 18964 |
. . . . . . . . 9
⊢ (𝐷 ∈ 𝑉 → 𝑆 ∈ Mnd) |
| 54 | 33, 1, 2 | symgtrf 19487 |
. . . . . . . . . . 11
⊢ ran
(pmTrsp‘𝐷) ⊆
(Base‘𝑆) |
| 55 | | sswrd 14560 |
. . . . . . . . . . 11
⊢ (ran
(pmTrsp‘𝐷) ⊆
(Base‘𝑆) → Word
ran (pmTrsp‘𝐷)
⊆ Word (Base‘𝑆)) |
| 56 | 54, 55 | ax-mp 5 |
. . . . . . . . . 10
⊢ Word ran
(pmTrsp‘𝐷) ⊆
Word (Base‘𝑆) |
| 57 | 56 | sseli 3979 |
. . . . . . . . 9
⊢ (𝑧 ∈ Word ran
(pmTrsp‘𝐷) →
𝑧 ∈ Word
(Base‘𝑆)) |
| 58 | 56 | sseli 3979 |
. . . . . . . . 9
⊢ (𝑤 ∈ Word ran
(pmTrsp‘𝐷) →
𝑤 ∈ Word
(Base‘𝑆)) |
| 59 | 2, 14 | gsumccat 18854 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Mnd ∧ 𝑧 ∈ Word (Base‘𝑆) ∧ 𝑤 ∈ Word (Base‘𝑆)) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g‘𝑆)(𝑆 Σg 𝑤))) |
| 60 | 53, 57, 58, 59 | syl3an 1161 |
. . . . . . . 8
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷)) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g‘𝑆)(𝑆 Σg 𝑤))) |
| 61 | 60 | 3expb 1121 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g‘𝑆)(𝑆 Σg 𝑤))) |
| 62 | 61 | fveq2d 6910 |
. . . . . 6
⊢ ((𝐷 ∈ 𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (𝑁‘((𝑆 Σg 𝑧)(+g‘𝑆)(𝑆 Σg 𝑤)))) |
| 63 | | ccatlen 14613 |
. . . . . . . . 9
⊢ ((𝑧 ∈ Word ran
(pmTrsp‘𝐷) ∧
𝑤 ∈ Word ran
(pmTrsp‘𝐷)) →
(♯‘(𝑧 ++ 𝑤)) = ((♯‘𝑧) + (♯‘𝑤))) |
| 64 | 63 | adantl 481 |
. . . . . . . 8
⊢ ((𝐷 ∈ 𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (♯‘(𝑧 ++ 𝑤)) = ((♯‘𝑧) + (♯‘𝑤))) |
| 65 | 64 | oveq2d 7447 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) →
(-1↑(♯‘(𝑧
++ 𝑤))) =
(-1↑((♯‘𝑧)
+ (♯‘𝑤)))) |
| 66 | | neg1cn 12380 |
. . . . . . . . 9
⊢ -1 ∈
ℂ |
| 67 | 66 | a1i 11 |
. . . . . . . 8
⊢ ((𝐷 ∈ 𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → -1 ∈
ℂ) |
| 68 | | lencl 14571 |
. . . . . . . . 9
⊢ (𝑤 ∈ Word ran
(pmTrsp‘𝐷) →
(♯‘𝑤) ∈
ℕ0) |
| 69 | 68 | ad2antll 729 |
. . . . . . . 8
⊢ ((𝐷 ∈ 𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (♯‘𝑤) ∈
ℕ0) |
| 70 | 35 | ad2antrl 728 |
. . . . . . . 8
⊢ ((𝐷 ∈ 𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (♯‘𝑧) ∈
ℕ0) |
| 71 | 67, 69, 70 | expaddd 14188 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) →
(-1↑((♯‘𝑧)
+ (♯‘𝑤))) =
((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤)))) |
| 72 | 65, 71 | eqtrd 2777 |
. . . . . 6
⊢ ((𝐷 ∈ 𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) →
(-1↑(♯‘(𝑧
++ 𝑤))) =
((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤)))) |
| 73 | 51, 62, 72 | 3eqtr3d 2785 |
. . . . 5
⊢ ((𝐷 ∈ 𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘((𝑆 Σg 𝑧)(+g‘𝑆)(𝑆 Σg 𝑤))) =
((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤)))) |
| 74 | | oveq12 7440 |
. . . . . . . 8
⊢ ((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) → (𝑥(+g‘𝑆)𝑦) = ((𝑆 Σg 𝑧)(+g‘𝑆)(𝑆 Σg 𝑤))) |
| 75 | 74 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) → (𝑁‘(𝑥(+g‘𝑆)𝑦)) = (𝑁‘((𝑆 Σg 𝑧)(+g‘𝑆)(𝑆 Σg 𝑤)))) |
| 76 | | oveq12 7440 |
. . . . . . 7
⊢ (((𝑁‘𝑥) = (-1↑(♯‘𝑧)) ∧ (𝑁‘𝑦) = (-1↑(♯‘𝑤))) → ((𝑁‘𝑥) · (𝑁‘𝑦)) = ((-1↑(♯‘𝑧)) ·
(-1↑(♯‘𝑤)))) |
| 77 | 75, 76 | eqeqan12d 2751 |
. . . . . 6
⊢ (((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) ∧ ((𝑁‘𝑥) = (-1↑(♯‘𝑧)) ∧ (𝑁‘𝑦) = (-1↑(♯‘𝑤)))) → ((𝑁‘(𝑥(+g‘𝑆)𝑦)) = ((𝑁‘𝑥) · (𝑁‘𝑦)) ↔ (𝑁‘((𝑆 Σg 𝑧)(+g‘𝑆)(𝑆 Σg 𝑤))) =
((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤))))) |
| 78 | 77 | an4s 660 |
. . . . 5
⊢ (((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁‘𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁‘𝑦) = (-1↑(♯‘𝑤)))) → ((𝑁‘(𝑥(+g‘𝑆)𝑦)) = ((𝑁‘𝑥) · (𝑁‘𝑦)) ↔ (𝑁‘((𝑆 Σg 𝑧)(+g‘𝑆)(𝑆 Σg 𝑤))) =
((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤))))) |
| 79 | 73, 78 | syl5ibrcom 247 |
. . . 4
⊢ ((𝐷 ∈ 𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁‘𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁‘𝑦) = (-1↑(♯‘𝑤)))) → (𝑁‘(𝑥(+g‘𝑆)𝑦)) = ((𝑁‘𝑥) · (𝑁‘𝑦)))) |
| 80 | 79 | rexlimdvva 3213 |
. . 3
⊢ (𝐷 ∈ 𝑉 → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁‘𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁‘𝑦) = (-1↑(♯‘𝑤)))) → (𝑁‘(𝑥(+g‘𝑆)𝑦)) = ((𝑁‘𝑥) · (𝑁‘𝑦)))) |
| 81 | 1, 33, 4 | psgnvali 19526 |
. . . . 5
⊢ (𝑦 ∈ dom 𝑁 → ∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁‘𝑦) = (-1↑(♯‘𝑤)))) |
| 82 | 34, 81 | anim12i 613 |
. . . 4
⊢ ((𝑥 ∈ dom 𝑁 ∧ 𝑦 ∈ dom 𝑁) → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁‘𝑥) = (-1↑(♯‘𝑧))) ∧ ∃𝑤 ∈ Word ran
(pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁‘𝑦) = (-1↑(♯‘𝑤))))) |
| 83 | | reeanv 3229 |
. . . 4
⊢
(∃𝑧 ∈
Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁‘𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁‘𝑦) = (-1↑(♯‘𝑤)))) ↔ (∃𝑧 ∈ Word ran
(pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁‘𝑥) = (-1↑(♯‘𝑧))) ∧ ∃𝑤 ∈ Word ran
(pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁‘𝑦) = (-1↑(♯‘𝑤))))) |
| 84 | 82, 83 | sylibr 234 |
. . 3
⊢ ((𝑥 ∈ dom 𝑁 ∧ 𝑦 ∈ dom 𝑁) → ∃𝑧 ∈ Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁‘𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁‘𝑦) = (-1↑(♯‘𝑤))))) |
| 85 | 80, 84 | impel 505 |
. 2
⊢ ((𝐷 ∈ 𝑉 ∧ (𝑥 ∈ dom 𝑁 ∧ 𝑦 ∈ dom 𝑁)) → (𝑁‘(𝑥(+g‘𝑆)𝑦)) = ((𝑁‘𝑥) · (𝑁‘𝑦))) |
| 86 | 10, 12, 16, 22, 25, 27, 48, 85 | isghmd 19243 |
1
⊢ (𝐷 ∈ 𝑉 → 𝑁 ∈ (𝐹 GrpHom 𝑈)) |