MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnghm Structured version   Visualization version   GIF version

Theorem psgnghm 20718
Description: The sign is a homomorphism from the finitary permutation group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnghm.s 𝑆 = (SymGrp‘𝐷)
psgnghm.n 𝑁 = (pmSgn‘𝐷)
psgnghm.f 𝐹 = (𝑆s dom 𝑁)
psgnghm.u 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})
Assertion
Ref Expression
psgnghm (𝐷𝑉𝑁 ∈ (𝐹 GrpHom 𝑈))

Proof of Theorem psgnghm
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnghm.s . . . . . 6 𝑆 = (SymGrp‘𝐷)
2 eqid 2821 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2821 . . . . . 6 {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
4 psgnghm.n . . . . . 6 𝑁 = (pmSgn‘𝐷)
51, 2, 3, 4psgnfn 18623 . . . . 5 𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
6 fndm 6449 . . . . 5 (𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} → dom 𝑁 = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin})
75, 6ax-mp 5 . . . 4 dom 𝑁 = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
87ssrab3 4056 . . 3 dom 𝑁 ⊆ (Base‘𝑆)
9 psgnghm.f . . . 4 𝐹 = (𝑆s dom 𝑁)
109, 2ressbas2 16549 . . 3 (dom 𝑁 ⊆ (Base‘𝑆) → dom 𝑁 = (Base‘𝐹))
118, 10ax-mp 5 . 2 dom 𝑁 = (Base‘𝐹)
12 psgnghm.u . . 3 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})
1312cnmsgnbas 20716 . 2 {1, -1} = (Base‘𝑈)
1411fvexi 6678 . . 3 dom 𝑁 ∈ V
15 eqid 2821 . . . 4 (+g𝑆) = (+g𝑆)
169, 15ressplusg 16606 . . 3 (dom 𝑁 ∈ V → (+g𝑆) = (+g𝐹))
1714, 16ax-mp 5 . 2 (+g𝑆) = (+g𝐹)
18 prex 5324 . . 3 {1, -1} ∈ V
19 eqid 2821 . . . . 5 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
20 cnfldmul 20545 . . . . 5 · = (.r‘ℂfld)
2119, 20mgpplusg 19237 . . . 4 · = (+g‘(mulGrp‘ℂfld))
2212, 21ressplusg 16606 . . 3 ({1, -1} ∈ V → · = (+g𝑈))
2318, 22ax-mp 5 . 2 · = (+g𝑈)
241, 4psgndmsubg 18624 . . 3 (𝐷𝑉 → dom 𝑁 ∈ (SubGrp‘𝑆))
259subggrp 18276 . . 3 (dom 𝑁 ∈ (SubGrp‘𝑆) → 𝐹 ∈ Grp)
2624, 25syl 17 . 2 (𝐷𝑉𝐹 ∈ Grp)
2712cnmsgngrp 20717 . . 3 𝑈 ∈ Grp
2827a1i 11 . 2 (𝐷𝑉𝑈 ∈ Grp)
29 fnfun 6447 . . . . . 6 (𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} → Fun 𝑁)
305, 29ax-mp 5 . . . . 5 Fun 𝑁
31 funfn 6379 . . . . 5 (Fun 𝑁𝑁 Fn dom 𝑁)
3230, 31mpbi 232 . . . 4 𝑁 Fn dom 𝑁
3332a1i 11 . . 3 (𝐷𝑉𝑁 Fn dom 𝑁)
34 eqid 2821 . . . . . 6 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
351, 34, 4psgnvali 18630 . . . . 5 (𝑥 ∈ dom 𝑁 → ∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))))
36 lencl 13877 . . . . . . . . . 10 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → (♯‘𝑧) ∈ ℕ0)
3736nn0zd 12079 . . . . . . . . 9 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → (♯‘𝑧) ∈ ℤ)
38 m1expcl2 13445 . . . . . . . . . 10 ((♯‘𝑧) ∈ ℤ → (-1↑(♯‘𝑧)) ∈ {-1, 1})
39 prcom 4661 . . . . . . . . . 10 {-1, 1} = {1, -1}
4038, 39eleqtrdi 2923 . . . . . . . . 9 ((♯‘𝑧) ∈ ℤ → (-1↑(♯‘𝑧)) ∈ {1, -1})
41 eleq1a 2908 . . . . . . . . 9 ((-1↑(♯‘𝑧)) ∈ {1, -1} → ((𝑁𝑥) = (-1↑(♯‘𝑧)) → (𝑁𝑥) ∈ {1, -1}))
4237, 40, 413syl 18 . . . . . . . 8 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → ((𝑁𝑥) = (-1↑(♯‘𝑧)) → (𝑁𝑥) ∈ {1, -1}))
4342adantld 493 . . . . . . 7 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → ((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) → (𝑁𝑥) ∈ {1, -1}))
4443rexlimiv 3280 . . . . . 6 (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) → (𝑁𝑥) ∈ {1, -1})
4544a1i 11 . . . . 5 (𝐷𝑉 → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) → (𝑁𝑥) ∈ {1, -1}))
4635, 45syl5 34 . . . 4 (𝐷𝑉 → (𝑥 ∈ dom 𝑁 → (𝑁𝑥) ∈ {1, -1}))
4746ralrimiv 3181 . . 3 (𝐷𝑉 → ∀𝑥 ∈ dom 𝑁(𝑁𝑥) ∈ {1, -1})
48 ffnfv 6876 . . 3 (𝑁:dom 𝑁⟶{1, -1} ↔ (𝑁 Fn dom 𝑁 ∧ ∀𝑥 ∈ dom 𝑁(𝑁𝑥) ∈ {1, -1}))
4933, 47, 48sylanbrc 585 . 2 (𝐷𝑉𝑁:dom 𝑁⟶{1, -1})
50 ccatcl 13920 . . . . . . 7 ((𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷)) → (𝑧 ++ 𝑤) ∈ Word ran (pmTrsp‘𝐷))
511, 34, 4psgnvalii 18631 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ++ 𝑤) ∈ Word ran (pmTrsp‘𝐷)) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (-1↑(♯‘(𝑧 ++ 𝑤))))
5250, 51sylan2 594 . . . . . 6 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (-1↑(♯‘(𝑧 ++ 𝑤))))
531symggrp 18522 . . . . . . . . . 10 (𝐷𝑉𝑆 ∈ Grp)
54 grpmnd 18104 . . . . . . . . . 10 (𝑆 ∈ Grp → 𝑆 ∈ Mnd)
5553, 54syl 17 . . . . . . . . 9 (𝐷𝑉𝑆 ∈ Mnd)
5634, 1, 2symgtrf 18591 . . . . . . . . . . 11 ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆)
57 sswrd 13863 . . . . . . . . . . 11 (ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆) → Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆))
5856, 57ax-mp 5 . . . . . . . . . 10 Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆)
5958sseli 3962 . . . . . . . . 9 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → 𝑧 ∈ Word (Base‘𝑆))
6058sseli 3962 . . . . . . . . 9 (𝑤 ∈ Word ran (pmTrsp‘𝐷) → 𝑤 ∈ Word (Base‘𝑆))
612, 15gsumccat 18000 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝑧 ∈ Word (Base‘𝑆) ∧ 𝑤 ∈ Word (Base‘𝑆)) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
6255, 59, 60, 61syl3an 1156 . . . . . . . 8 ((𝐷𝑉𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷)) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
63623expb 1116 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
6463fveq2d 6668 . . . . . 6 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))))
65 ccatlen 13921 . . . . . . . . 9 ((𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷)) → (♯‘(𝑧 ++ 𝑤)) = ((♯‘𝑧) + (♯‘𝑤)))
6665adantl 484 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (♯‘(𝑧 ++ 𝑤)) = ((♯‘𝑧) + (♯‘𝑤)))
6766oveq2d 7166 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (-1↑(♯‘(𝑧 ++ 𝑤))) = (-1↑((♯‘𝑧) + (♯‘𝑤))))
68 neg1cn 11745 . . . . . . . . 9 -1 ∈ ℂ
6968a1i 11 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → -1 ∈ ℂ)
70 lencl 13877 . . . . . . . . 9 (𝑤 ∈ Word ran (pmTrsp‘𝐷) → (♯‘𝑤) ∈ ℕ0)
7170ad2antll 727 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (♯‘𝑤) ∈ ℕ0)
7236ad2antrl 726 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (♯‘𝑧) ∈ ℕ0)
7369, 71, 72expaddd 13506 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (-1↑((♯‘𝑧) + (♯‘𝑤))) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤))))
7467, 73eqtrd 2856 . . . . . 6 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (-1↑(♯‘(𝑧 ++ 𝑤))) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤))))
7552, 64, 743eqtr3d 2864 . . . . 5 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤))))
76 oveq12 7159 . . . . . . . 8 ((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) → (𝑥(+g𝑆)𝑦) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
7776fveq2d 6668 . . . . . . 7 ((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) → (𝑁‘(𝑥(+g𝑆)𝑦)) = (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))))
78 oveq12 7159 . . . . . . 7 (((𝑁𝑥) = (-1↑(♯‘𝑧)) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤))) → ((𝑁𝑥) · (𝑁𝑦)) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤))))
7977, 78eqeqan12d 2838 . . . . . 6 (((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) ∧ ((𝑁𝑥) = (-1↑(♯‘𝑧)) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))) → ((𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦)) ↔ (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤)))))
8079an4s 658 . . . . 5 (((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))) → ((𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦)) ↔ (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤)))))
8175, 80syl5ibrcom 249 . . . 4 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))) → (𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦))))
8281rexlimdvva 3294 . . 3 (𝐷𝑉 → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))) → (𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦))))
831, 34, 4psgnvali 18630 . . . . 5 (𝑦 ∈ dom 𝑁 → ∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤))))
8435, 83anim12i 614 . . . 4 ((𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁) → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ ∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))))
85 reeanv 3367 . . . 4 (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))) ↔ (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ ∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))))
8684, 85sylibr 236 . . 3 ((𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁) → ∃𝑧 ∈ Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))))
8782, 86impel 508 . 2 ((𝐷𝑉 ∧ (𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁)) → (𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦)))
8811, 13, 17, 23, 26, 28, 49, 87isghmd 18361 1 (𝐷𝑉𝑁 ∈ (𝐹 GrpHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  cdif 3932  wss 3935  {cpr 4562   I cid 5453  dom cdm 5549  ran crn 5550  Fun wfun 6343   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  Fincfn 8503  cc 10529  1c1 10532   + caddc 10534   · cmul 10536  -cneg 10865  0cn0 11891  cz 11975  cexp 13423  chash 13684  Word cword 13855   ++ cconcat 13916  Basecbs 16477  s cress 16478  +gcplusg 16559   Σg cgsu 16708  Mndcmnd 17905  Grpcgrp 18097  SubGrpcsubg 18267   GrpHom cghm 18349  SymGrpcsymg 18489  pmTrspcpmtr 18563  pmSgncpsgn 18611  mulGrpcmgp 19233  fldccnfld 20539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-xor 1501  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-ot 4569  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-dec 12093  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-word 13856  df-lsw 13909  df-concat 13917  df-s1 13944  df-substr 13997  df-pfx 14027  df-splice 14106  df-reverse 14115  df-s2 14204  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-0g 16709  df-gsum 16710  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-efmnd 18028  df-grp 18100  df-minusg 18101  df-subg 18270  df-ghm 18350  df-gim 18393  df-oppg 18468  df-symg 18490  df-pmtr 18564  df-psgn 18613  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19498  df-cnfld 20540
This theorem is referenced by:  psgnghm2  20719  evpmss  20724
  Copyright terms: Public domain W3C validator