MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnghm Structured version   Visualization version   GIF version

Theorem psgnghm 20269
Description: The sign is a homomorphism from the finitary permutation group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnghm.s 𝑆 = (SymGrp‘𝐷)
psgnghm.n 𝑁 = (pmSgn‘𝐷)
psgnghm.f 𝐹 = (𝑆s dom 𝑁)
psgnghm.u 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})
Assertion
Ref Expression
psgnghm (𝐷𝑉𝑁 ∈ (𝐹 GrpHom 𝑈))

Proof of Theorem psgnghm
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnghm.s . . . . . 6 𝑆 = (SymGrp‘𝐷)
2 eqid 2798 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2798 . . . . . 6 {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
4 psgnghm.n . . . . . 6 𝑁 = (pmSgn‘𝐷)
51, 2, 3, 4psgnfn 18621 . . . . 5 𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
65fndmi 6426 . . . 4 dom 𝑁 = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
76ssrab3 4008 . . 3 dom 𝑁 ⊆ (Base‘𝑆)
8 psgnghm.f . . . 4 𝐹 = (𝑆s dom 𝑁)
98, 2ressbas2 16547 . . 3 (dom 𝑁 ⊆ (Base‘𝑆) → dom 𝑁 = (Base‘𝐹))
107, 9ax-mp 5 . 2 dom 𝑁 = (Base‘𝐹)
11 psgnghm.u . . 3 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})
1211cnmsgnbas 20267 . 2 {1, -1} = (Base‘𝑈)
1310fvexi 6659 . . 3 dom 𝑁 ∈ V
14 eqid 2798 . . . 4 (+g𝑆) = (+g𝑆)
158, 14ressplusg 16604 . . 3 (dom 𝑁 ∈ V → (+g𝑆) = (+g𝐹))
1613, 15ax-mp 5 . 2 (+g𝑆) = (+g𝐹)
17 prex 5298 . . 3 {1, -1} ∈ V
18 eqid 2798 . . . . 5 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
19 cnfldmul 20097 . . . . 5 · = (.r‘ℂfld)
2018, 19mgpplusg 19236 . . . 4 · = (+g‘(mulGrp‘ℂfld))
2111, 20ressplusg 16604 . . 3 ({1, -1} ∈ V → · = (+g𝑈))
2217, 21ax-mp 5 . 2 · = (+g𝑈)
231, 4psgndmsubg 18622 . . 3 (𝐷𝑉 → dom 𝑁 ∈ (SubGrp‘𝑆))
248subggrp 18274 . . 3 (dom 𝑁 ∈ (SubGrp‘𝑆) → 𝐹 ∈ Grp)
2523, 24syl 17 . 2 (𝐷𝑉𝐹 ∈ Grp)
2611cnmsgngrp 20268 . . 3 𝑈 ∈ Grp
2726a1i 11 . 2 (𝐷𝑉𝑈 ∈ Grp)
28 fnfun 6423 . . . . . 6 (𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} → Fun 𝑁)
295, 28ax-mp 5 . . . . 5 Fun 𝑁
30 funfn 6354 . . . . 5 (Fun 𝑁𝑁 Fn dom 𝑁)
3129, 30mpbi 233 . . . 4 𝑁 Fn dom 𝑁
3231a1i 11 . . 3 (𝐷𝑉𝑁 Fn dom 𝑁)
33 eqid 2798 . . . . . 6 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
341, 33, 4psgnvali 18628 . . . . 5 (𝑥 ∈ dom 𝑁 → ∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))))
35 lencl 13876 . . . . . . . . . 10 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → (♯‘𝑧) ∈ ℕ0)
3635nn0zd 12073 . . . . . . . . 9 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → (♯‘𝑧) ∈ ℤ)
37 m1expcl2 13447 . . . . . . . . . 10 ((♯‘𝑧) ∈ ℤ → (-1↑(♯‘𝑧)) ∈ {-1, 1})
38 prcom 4628 . . . . . . . . . 10 {-1, 1} = {1, -1}
3937, 38eleqtrdi 2900 . . . . . . . . 9 ((♯‘𝑧) ∈ ℤ → (-1↑(♯‘𝑧)) ∈ {1, -1})
40 eleq1a 2885 . . . . . . . . 9 ((-1↑(♯‘𝑧)) ∈ {1, -1} → ((𝑁𝑥) = (-1↑(♯‘𝑧)) → (𝑁𝑥) ∈ {1, -1}))
4136, 39, 403syl 18 . . . . . . . 8 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → ((𝑁𝑥) = (-1↑(♯‘𝑧)) → (𝑁𝑥) ∈ {1, -1}))
4241adantld 494 . . . . . . 7 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → ((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) → (𝑁𝑥) ∈ {1, -1}))
4342rexlimiv 3239 . . . . . 6 (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) → (𝑁𝑥) ∈ {1, -1})
4443a1i 11 . . . . 5 (𝐷𝑉 → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) → (𝑁𝑥) ∈ {1, -1}))
4534, 44syl5 34 . . . 4 (𝐷𝑉 → (𝑥 ∈ dom 𝑁 → (𝑁𝑥) ∈ {1, -1}))
4645ralrimiv 3148 . . 3 (𝐷𝑉 → ∀𝑥 ∈ dom 𝑁(𝑁𝑥) ∈ {1, -1})
47 ffnfv 6859 . . 3 (𝑁:dom 𝑁⟶{1, -1} ↔ (𝑁 Fn dom 𝑁 ∧ ∀𝑥 ∈ dom 𝑁(𝑁𝑥) ∈ {1, -1}))
4832, 46, 47sylanbrc 586 . 2 (𝐷𝑉𝑁:dom 𝑁⟶{1, -1})
49 ccatcl 13917 . . . . . . 7 ((𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷)) → (𝑧 ++ 𝑤) ∈ Word ran (pmTrsp‘𝐷))
501, 33, 4psgnvalii 18629 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ++ 𝑤) ∈ Word ran (pmTrsp‘𝐷)) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (-1↑(♯‘(𝑧 ++ 𝑤))))
5149, 50sylan2 595 . . . . . 6 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (-1↑(♯‘(𝑧 ++ 𝑤))))
521symggrp 18520 . . . . . . . . . 10 (𝐷𝑉𝑆 ∈ Grp)
53 grpmnd 18102 . . . . . . . . . 10 (𝑆 ∈ Grp → 𝑆 ∈ Mnd)
5452, 53syl 17 . . . . . . . . 9 (𝐷𝑉𝑆 ∈ Mnd)
5533, 1, 2symgtrf 18589 . . . . . . . . . . 11 ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆)
56 sswrd 13865 . . . . . . . . . . 11 (ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆) → Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆))
5755, 56ax-mp 5 . . . . . . . . . 10 Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆)
5857sseli 3911 . . . . . . . . 9 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → 𝑧 ∈ Word (Base‘𝑆))
5957sseli 3911 . . . . . . . . 9 (𝑤 ∈ Word ran (pmTrsp‘𝐷) → 𝑤 ∈ Word (Base‘𝑆))
602, 14gsumccat 17998 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝑧 ∈ Word (Base‘𝑆) ∧ 𝑤 ∈ Word (Base‘𝑆)) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
6154, 58, 59, 60syl3an 1157 . . . . . . . 8 ((𝐷𝑉𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷)) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
62613expb 1117 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
6362fveq2d 6649 . . . . . 6 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))))
64 ccatlen 13918 . . . . . . . . 9 ((𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷)) → (♯‘(𝑧 ++ 𝑤)) = ((♯‘𝑧) + (♯‘𝑤)))
6564adantl 485 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (♯‘(𝑧 ++ 𝑤)) = ((♯‘𝑧) + (♯‘𝑤)))
6665oveq2d 7151 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (-1↑(♯‘(𝑧 ++ 𝑤))) = (-1↑((♯‘𝑧) + (♯‘𝑤))))
67 neg1cn 11739 . . . . . . . . 9 -1 ∈ ℂ
6867a1i 11 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → -1 ∈ ℂ)
69 lencl 13876 . . . . . . . . 9 (𝑤 ∈ Word ran (pmTrsp‘𝐷) → (♯‘𝑤) ∈ ℕ0)
7069ad2antll 728 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (♯‘𝑤) ∈ ℕ0)
7135ad2antrl 727 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (♯‘𝑧) ∈ ℕ0)
7268, 70, 71expaddd 13508 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (-1↑((♯‘𝑧) + (♯‘𝑤))) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤))))
7366, 72eqtrd 2833 . . . . . 6 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (-1↑(♯‘(𝑧 ++ 𝑤))) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤))))
7451, 63, 733eqtr3d 2841 . . . . 5 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤))))
75 oveq12 7144 . . . . . . . 8 ((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) → (𝑥(+g𝑆)𝑦) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
7675fveq2d 6649 . . . . . . 7 ((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) → (𝑁‘(𝑥(+g𝑆)𝑦)) = (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))))
77 oveq12 7144 . . . . . . 7 (((𝑁𝑥) = (-1↑(♯‘𝑧)) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤))) → ((𝑁𝑥) · (𝑁𝑦)) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤))))
7876, 77eqeqan12d 2815 . . . . . 6 (((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) ∧ ((𝑁𝑥) = (-1↑(♯‘𝑧)) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))) → ((𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦)) ↔ (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤)))))
7978an4s 659 . . . . 5 (((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))) → ((𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦)) ↔ (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))) = ((-1↑(♯‘𝑧)) · (-1↑(♯‘𝑤)))))
8074, 79syl5ibrcom 250 . . . 4 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))) → (𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦))))
8180rexlimdvva 3253 . . 3 (𝐷𝑉 → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))) → (𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦))))
821, 33, 4psgnvali 18628 . . . . 5 (𝑦 ∈ dom 𝑁 → ∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤))))
8334, 82anim12i 615 . . . 4 ((𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁) → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ ∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))))
84 reeanv 3320 . . . 4 (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))) ↔ (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ ∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))))
8583, 84sylibr 237 . . 3 ((𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁) → ∃𝑧 ∈ Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(♯‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(♯‘𝑤)))))
8681, 85impel 509 . 2 ((𝐷𝑉 ∧ (𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁)) → (𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦)))
8710, 12, 16, 22, 25, 27, 48, 86isghmd 18359 1 (𝐷𝑉𝑁 ∈ (𝐹 GrpHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  cdif 3878  wss 3881  {cpr 4527   I cid 5424  dom cdm 5519  ran crn 5520  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  Fincfn 8492  cc 10524  1c1 10527   + caddc 10529   · cmul 10531  -cneg 10860  0cn0 11885  cz 11969  cexp 13425  chash 13686  Word cword 13857   ++ cconcat 13913  Basecbs 16475  s cress 16476  +gcplusg 16557   Σg cgsu 16706  Mndcmnd 17903  Grpcgrp 18095  SubGrpcsubg 18265   GrpHom cghm 18347  SymGrpcsymg 18487  pmTrspcpmtr 18561  pmSgncpsgn 18609  mulGrpcmgp 19232  fldccnfld 20091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-splice 14103  df-reverse 14112  df-s2 14201  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-efmnd 18026  df-grp 18098  df-minusg 18099  df-subg 18268  df-ghm 18348  df-gim 18391  df-oppg 18466  df-symg 18488  df-pmtr 18562  df-psgn 18611  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-cnfld 20092
This theorem is referenced by:  psgnghm2  20270  evpmss  20275
  Copyright terms: Public domain W3C validator