Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgtrinv Structured version   Visualization version   GIF version

Theorem symgtrinv 18592
 Description: To invert a permutation represented as a sequence of transpositions, reverse the sequence. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypotheses
Ref Expression
symgtrinv.t 𝑇 = ran (pmTrsp‘𝐷)
symgtrinv.g 𝐺 = (SymGrp‘𝐷)
symgtrinv.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
symgtrinv ((𝐷𝑉𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = (𝐺 Σg (reverse‘𝑊)))

Proof of Theorem symgtrinv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 symgtrinv.g . . . . 5 𝐺 = (SymGrp‘𝐷)
21symggrp 18520 . . . 4 (𝐷𝑉𝐺 ∈ Grp)
3 eqid 2798 . . . . 5 (oppg𝐺) = (oppg𝐺)
4 symgtrinv.i . . . . 5 𝐼 = (invg𝐺)
53, 4invoppggim 18480 . . . 4 (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso (oppg𝐺)))
6 gimghm 18396 . . . 4 (𝐼 ∈ (𝐺 GrpIso (oppg𝐺)) → 𝐼 ∈ (𝐺 GrpHom (oppg𝐺)))
7 ghmmhm 18360 . . . 4 (𝐼 ∈ (𝐺 GrpHom (oppg𝐺)) → 𝐼 ∈ (𝐺 MndHom (oppg𝐺)))
82, 5, 6, 74syl 19 . . 3 (𝐷𝑉𝐼 ∈ (𝐺 MndHom (oppg𝐺)))
9 symgtrinv.t . . . . . 6 𝑇 = ran (pmTrsp‘𝐷)
10 eqid 2798 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
119, 1, 10symgtrf 18589 . . . . 5 𝑇 ⊆ (Base‘𝐺)
12 sswrd 13865 . . . . 5 (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺))
1311, 12ax-mp 5 . . . 4 Word 𝑇 ⊆ Word (Base‘𝐺)
1413sseli 3911 . . 3 (𝑊 ∈ Word 𝑇𝑊 ∈ Word (Base‘𝐺))
1510gsumwmhm 18002 . . 3 ((𝐼 ∈ (𝐺 MndHom (oppg𝐺)) ∧ 𝑊 ∈ Word (Base‘𝐺)) → (𝐼‘(𝐺 Σg 𝑊)) = ((oppg𝐺) Σg (𝐼𝑊)))
168, 14, 15syl2an 598 . 2 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = ((oppg𝐺) Σg (𝐼𝑊)))
1710, 4grpinvf 18142 . . . . . . 7 (𝐺 ∈ Grp → 𝐼:(Base‘𝐺)⟶(Base‘𝐺))
182, 17syl 17 . . . . . 6 (𝐷𝑉𝐼:(Base‘𝐺)⟶(Base‘𝐺))
19 wrdf 13862 . . . . . . . 8 (𝑊 ∈ Word 𝑇𝑊:(0..^(♯‘𝑊))⟶𝑇)
2019adantl 485 . . . . . . 7 ((𝐷𝑉𝑊 ∈ Word 𝑇) → 𝑊:(0..^(♯‘𝑊))⟶𝑇)
21 fss 6501 . . . . . . 7 ((𝑊:(0..^(♯‘𝑊))⟶𝑇𝑇 ⊆ (Base‘𝐺)) → 𝑊:(0..^(♯‘𝑊))⟶(Base‘𝐺))
2220, 11, 21sylancl 589 . . . . . 6 ((𝐷𝑉𝑊 ∈ Word 𝑇) → 𝑊:(0..^(♯‘𝑊))⟶(Base‘𝐺))
23 fco 6505 . . . . . 6 ((𝐼:(Base‘𝐺)⟶(Base‘𝐺) ∧ 𝑊:(0..^(♯‘𝑊))⟶(Base‘𝐺)) → (𝐼𝑊):(0..^(♯‘𝑊))⟶(Base‘𝐺))
2418, 22, 23syl2an2r 684 . . . . 5 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (𝐼𝑊):(0..^(♯‘𝑊))⟶(Base‘𝐺))
2524ffnd 6488 . . . 4 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (𝐼𝑊) Fn (0..^(♯‘𝑊)))
2620ffnd 6488 . . . 4 ((𝐷𝑉𝑊 ∈ Word 𝑇) → 𝑊 Fn (0..^(♯‘𝑊)))
27 fvco2 6735 . . . . . 6 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑊)‘𝑥) = (𝐼‘(𝑊𝑥)))
2826, 27sylan 583 . . . . 5 (((𝐷𝑉𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑊)‘𝑥) = (𝐼‘(𝑊𝑥)))
2920ffvelrnda 6828 . . . . . . 7 (((𝐷𝑉𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊𝑥) ∈ 𝑇)
3011, 29sseldi 3913 . . . . . 6 (((𝐷𝑉𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊𝑥) ∈ (Base‘𝐺))
311, 10, 4symginv 18522 . . . . . 6 ((𝑊𝑥) ∈ (Base‘𝐺) → (𝐼‘(𝑊𝑥)) = (𝑊𝑥))
3230, 31syl 17 . . . . 5 (((𝐷𝑉𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝐼‘(𝑊𝑥)) = (𝑊𝑥))
33 eqid 2798 . . . . . . 7 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
3433, 9pmtrfcnv 18584 . . . . . 6 ((𝑊𝑥) ∈ 𝑇(𝑊𝑥) = (𝑊𝑥))
3529, 34syl 17 . . . . 5 (((𝐷𝑉𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊𝑥) = (𝑊𝑥))
3628, 32, 353eqtrd 2837 . . . 4 (((𝐷𝑉𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑊)‘𝑥) = (𝑊𝑥))
3725, 26, 36eqfnfvd 6782 . . 3 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (𝐼𝑊) = 𝑊)
3837oveq2d 7151 . 2 ((𝐷𝑉𝑊 ∈ Word 𝑇) → ((oppg𝐺) Σg (𝐼𝑊)) = ((oppg𝐺) Σg 𝑊))
39 grpmnd 18102 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
402, 39syl 17 . . 3 (𝐷𝑉𝐺 ∈ Mnd)
4110, 3gsumwrev 18486 . . 3 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word (Base‘𝐺)) → ((oppg𝐺) Σg 𝑊) = (𝐺 Σg (reverse‘𝑊)))
4240, 14, 41syl2an 598 . 2 ((𝐷𝑉𝑊 ∈ Word 𝑇) → ((oppg𝐺) Σg 𝑊) = (𝐺 Σg (reverse‘𝑊)))
4316, 38, 423eqtrd 2837 1 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = (𝐺 Σg (reverse‘𝑊)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ⊆ wss 3881  ◡ccnv 5518  ran crn 5520   ∘ ccom 5523   Fn wfn 6319  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135  0cc0 10526  ..^cfzo 13028  ♯chash 13686  Word cword 13857  reversecreverse 14111  Basecbs 16475   Σg cgsu 16706  Mndcmnd 17903   MndHom cmhm 17946  Grpcgrp 18095  invgcminusg 18096   GrpHom cghm 18347   GrpIso cgim 18389  oppgcoppg 18465  SymGrpcsymg 18487  pmTrspcpmtr 18561 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-reverse 14112  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-tset 16576  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-efmnd 18026  df-grp 18098  df-minusg 18099  df-ghm 18348  df-gim 18391  df-oppg 18466  df-symg 18488  df-pmtr 18562 This theorem is referenced by:  psgnuni  18619
 Copyright terms: Public domain W3C validator