MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgtrinv Structured version   Visualization version   GIF version

Theorem symgtrinv 19402
Description: To invert a permutation represented as a sequence of transpositions, reverse the sequence. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypotheses
Ref Expression
symgtrinv.t 𝑇 = ran (pmTrsp‘𝐷)
symgtrinv.g 𝐺 = (SymGrp‘𝐷)
symgtrinv.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
symgtrinv ((𝐷𝑉𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = (𝐺 Σg (reverse‘𝑊)))

Proof of Theorem symgtrinv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 symgtrinv.g . . . . 5 𝐺 = (SymGrp‘𝐷)
21symggrp 19330 . . . 4 (𝐷𝑉𝐺 ∈ Grp)
3 eqid 2729 . . . . 5 (oppg𝐺) = (oppg𝐺)
4 symgtrinv.i . . . . 5 𝐼 = (invg𝐺)
53, 4invoppggim 19292 . . . 4 (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso (oppg𝐺)))
6 gimghm 19196 . . . 4 (𝐼 ∈ (𝐺 GrpIso (oppg𝐺)) → 𝐼 ∈ (𝐺 GrpHom (oppg𝐺)))
7 ghmmhm 19158 . . . 4 (𝐼 ∈ (𝐺 GrpHom (oppg𝐺)) → 𝐼 ∈ (𝐺 MndHom (oppg𝐺)))
82, 5, 6, 74syl 19 . . 3 (𝐷𝑉𝐼 ∈ (𝐺 MndHom (oppg𝐺)))
9 symgtrinv.t . . . . . 6 𝑇 = ran (pmTrsp‘𝐷)
10 eqid 2729 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
119, 1, 10symgtrf 19399 . . . . 5 𝑇 ⊆ (Base‘𝐺)
12 sswrd 14487 . . . . 5 (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺))
1311, 12ax-mp 5 . . . 4 Word 𝑇 ⊆ Word (Base‘𝐺)
1413sseli 3942 . . 3 (𝑊 ∈ Word 𝑇𝑊 ∈ Word (Base‘𝐺))
1510gsumwmhm 18772 . . 3 ((𝐼 ∈ (𝐺 MndHom (oppg𝐺)) ∧ 𝑊 ∈ Word (Base‘𝐺)) → (𝐼‘(𝐺 Σg 𝑊)) = ((oppg𝐺) Σg (𝐼𝑊)))
168, 14, 15syl2an 596 . 2 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = ((oppg𝐺) Σg (𝐼𝑊)))
1710, 4grpinvf 18918 . . . . . . 7 (𝐺 ∈ Grp → 𝐼:(Base‘𝐺)⟶(Base‘𝐺))
182, 17syl 17 . . . . . 6 (𝐷𝑉𝐼:(Base‘𝐺)⟶(Base‘𝐺))
19 wrdf 14483 . . . . . . . 8 (𝑊 ∈ Word 𝑇𝑊:(0..^(♯‘𝑊))⟶𝑇)
2019adantl 481 . . . . . . 7 ((𝐷𝑉𝑊 ∈ Word 𝑇) → 𝑊:(0..^(♯‘𝑊))⟶𝑇)
21 fss 6704 . . . . . . 7 ((𝑊:(0..^(♯‘𝑊))⟶𝑇𝑇 ⊆ (Base‘𝐺)) → 𝑊:(0..^(♯‘𝑊))⟶(Base‘𝐺))
2220, 11, 21sylancl 586 . . . . . 6 ((𝐷𝑉𝑊 ∈ Word 𝑇) → 𝑊:(0..^(♯‘𝑊))⟶(Base‘𝐺))
23 fco 6712 . . . . . 6 ((𝐼:(Base‘𝐺)⟶(Base‘𝐺) ∧ 𝑊:(0..^(♯‘𝑊))⟶(Base‘𝐺)) → (𝐼𝑊):(0..^(♯‘𝑊))⟶(Base‘𝐺))
2418, 22, 23syl2an2r 685 . . . . 5 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (𝐼𝑊):(0..^(♯‘𝑊))⟶(Base‘𝐺))
2524ffnd 6689 . . . 4 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (𝐼𝑊) Fn (0..^(♯‘𝑊)))
2620ffnd 6689 . . . 4 ((𝐷𝑉𝑊 ∈ Word 𝑇) → 𝑊 Fn (0..^(♯‘𝑊)))
27 fvco2 6958 . . . . . 6 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑊)‘𝑥) = (𝐼‘(𝑊𝑥)))
2826, 27sylan 580 . . . . 5 (((𝐷𝑉𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑊)‘𝑥) = (𝐼‘(𝑊𝑥)))
2920ffvelcdmda 7056 . . . . . . 7 (((𝐷𝑉𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊𝑥) ∈ 𝑇)
3011, 29sselid 3944 . . . . . 6 (((𝐷𝑉𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊𝑥) ∈ (Base‘𝐺))
311, 10, 4symginv 19332 . . . . . 6 ((𝑊𝑥) ∈ (Base‘𝐺) → (𝐼‘(𝑊𝑥)) = (𝑊𝑥))
3230, 31syl 17 . . . . 5 (((𝐷𝑉𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝐼‘(𝑊𝑥)) = (𝑊𝑥))
33 eqid 2729 . . . . . . 7 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
3433, 9pmtrfcnv 19394 . . . . . 6 ((𝑊𝑥) ∈ 𝑇(𝑊𝑥) = (𝑊𝑥))
3529, 34syl 17 . . . . 5 (((𝐷𝑉𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊𝑥) = (𝑊𝑥))
3628, 32, 353eqtrd 2768 . . . 4 (((𝐷𝑉𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑊)‘𝑥) = (𝑊𝑥))
3725, 26, 36eqfnfvd 7006 . . 3 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (𝐼𝑊) = 𝑊)
3837oveq2d 7403 . 2 ((𝐷𝑉𝑊 ∈ Word 𝑇) → ((oppg𝐺) Σg (𝐼𝑊)) = ((oppg𝐺) Σg 𝑊))
392grpmndd 18878 . . 3 (𝐷𝑉𝐺 ∈ Mnd)
4010, 3gsumwrev 19298 . . 3 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word (Base‘𝐺)) → ((oppg𝐺) Σg 𝑊) = (𝐺 Σg (reverse‘𝑊)))
4139, 14, 40syl2an 596 . 2 ((𝐷𝑉𝑊 ∈ Word 𝑇) → ((oppg𝐺) Σg 𝑊) = (𝐺 Σg (reverse‘𝑊)))
4216, 38, 413eqtrd 2768 1 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = (𝐺 Σg (reverse‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3914  ccnv 5637  ran crn 5639  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  0cc0 11068  ..^cfzo 13615  chash 14295  Word cword 14478  reversecreverse 14723  Basecbs 17179   Σg cgsu 17403  Mndcmnd 18661   MndHom cmhm 18708  Grpcgrp 18865  invgcminusg 18866   GrpHom cghm 19144   GrpIso cgim 19189  oppgcoppg 19277  SymGrpcsymg 19299  pmTrspcpmtr 19371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-reverse 14724  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-tset 17239  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-efmnd 18796  df-grp 18868  df-minusg 18869  df-ghm 19145  df-gim 19191  df-oppg 19278  df-symg 19300  df-pmtr 19372
This theorem is referenced by:  psgnuni  19429
  Copyright terms: Public domain W3C validator