![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgtrinv | Structured version Visualization version GIF version |
Description: To invert a permutation represented as a sequence of transpositions, reverse the sequence. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
Ref | Expression |
---|---|
symgtrinv.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
symgtrinv.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
symgtrinv.i | ⊢ 𝐼 = (invg‘𝐺) |
Ref | Expression |
---|---|
symgtrinv | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = (𝐺 Σg (reverse‘𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgtrinv.g | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐷) | |
2 | 1 | symggrp 19442 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → 𝐺 ∈ Grp) |
3 | eqid 2740 | . . . . 5 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
4 | symgtrinv.i | . . . . 5 ⊢ 𝐼 = (invg‘𝐺) | |
5 | 3, 4 | invoppggim 19403 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso (oppg‘𝐺))) |
6 | gimghm 19304 | . . . 4 ⊢ (𝐼 ∈ (𝐺 GrpIso (oppg‘𝐺)) → 𝐼 ∈ (𝐺 GrpHom (oppg‘𝐺))) | |
7 | ghmmhm 19266 | . . . 4 ⊢ (𝐼 ∈ (𝐺 GrpHom (oppg‘𝐺)) → 𝐼 ∈ (𝐺 MndHom (oppg‘𝐺))) | |
8 | 2, 5, 6, 7 | 4syl 19 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐼 ∈ (𝐺 MndHom (oppg‘𝐺))) |
9 | symgtrinv.t | . . . . . 6 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
10 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
11 | 9, 1, 10 | symgtrf 19511 | . . . . 5 ⊢ 𝑇 ⊆ (Base‘𝐺) |
12 | sswrd 14570 | . . . . 5 ⊢ (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺)) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ Word 𝑇 ⊆ Word (Base‘𝐺) |
14 | 13 | sseli 4004 | . . 3 ⊢ (𝑊 ∈ Word 𝑇 → 𝑊 ∈ Word (Base‘𝐺)) |
15 | 10 | gsumwmhm 18880 | . . 3 ⊢ ((𝐼 ∈ (𝐺 MndHom (oppg‘𝐺)) ∧ 𝑊 ∈ Word (Base‘𝐺)) → (𝐼‘(𝐺 Σg 𝑊)) = ((oppg‘𝐺) Σg (𝐼 ∘ 𝑊))) |
16 | 8, 14, 15 | syl2an 595 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = ((oppg‘𝐺) Σg (𝐼 ∘ 𝑊))) |
17 | 10, 4 | grpinvf 19026 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → 𝐼:(Base‘𝐺)⟶(Base‘𝐺)) |
18 | 2, 17 | syl 17 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → 𝐼:(Base‘𝐺)⟶(Base‘𝐺)) |
19 | wrdf 14567 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑇 → 𝑊:(0..^(♯‘𝑊))⟶𝑇) | |
20 | 19 | adantl 481 | . . . . . . 7 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → 𝑊:(0..^(♯‘𝑊))⟶𝑇) |
21 | fss 6763 | . . . . . . 7 ⊢ ((𝑊:(0..^(♯‘𝑊))⟶𝑇 ∧ 𝑇 ⊆ (Base‘𝐺)) → 𝑊:(0..^(♯‘𝑊))⟶(Base‘𝐺)) | |
22 | 20, 11, 21 | sylancl 585 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → 𝑊:(0..^(♯‘𝑊))⟶(Base‘𝐺)) |
23 | fco 6771 | . . . . . 6 ⊢ ((𝐼:(Base‘𝐺)⟶(Base‘𝐺) ∧ 𝑊:(0..^(♯‘𝑊))⟶(Base‘𝐺)) → (𝐼 ∘ 𝑊):(0..^(♯‘𝑊))⟶(Base‘𝐺)) | |
24 | 18, 22, 23 | syl2an2r 684 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼 ∘ 𝑊):(0..^(♯‘𝑊))⟶(Base‘𝐺)) |
25 | 24 | ffnd 6748 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼 ∘ 𝑊) Fn (0..^(♯‘𝑊))) |
26 | 20 | ffnd 6748 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → 𝑊 Fn (0..^(♯‘𝑊))) |
27 | fvco2 7019 | . . . . . 6 ⊢ ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐼 ∘ 𝑊)‘𝑥) = (𝐼‘(𝑊‘𝑥))) | |
28 | 26, 27 | sylan 579 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐼 ∘ 𝑊)‘𝑥) = (𝐼‘(𝑊‘𝑥))) |
29 | 20 | ffvelcdmda 7118 | . . . . . . 7 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑥) ∈ 𝑇) |
30 | 11, 29 | sselid 4006 | . . . . . 6 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑥) ∈ (Base‘𝐺)) |
31 | 1, 10, 4 | symginv 19444 | . . . . . 6 ⊢ ((𝑊‘𝑥) ∈ (Base‘𝐺) → (𝐼‘(𝑊‘𝑥)) = ◡(𝑊‘𝑥)) |
32 | 30, 31 | syl 17 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝐼‘(𝑊‘𝑥)) = ◡(𝑊‘𝑥)) |
33 | eqid 2740 | . . . . . . 7 ⊢ (pmTrsp‘𝐷) = (pmTrsp‘𝐷) | |
34 | 33, 9 | pmtrfcnv 19506 | . . . . . 6 ⊢ ((𝑊‘𝑥) ∈ 𝑇 → ◡(𝑊‘𝑥) = (𝑊‘𝑥)) |
35 | 29, 34 | syl 17 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ◡(𝑊‘𝑥) = (𝑊‘𝑥)) |
36 | 28, 32, 35 | 3eqtrd 2784 | . . . 4 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐼 ∘ 𝑊)‘𝑥) = (𝑊‘𝑥)) |
37 | 25, 26, 36 | eqfnfvd 7067 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼 ∘ 𝑊) = 𝑊) |
38 | 37 | oveq2d 7464 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → ((oppg‘𝐺) Σg (𝐼 ∘ 𝑊)) = ((oppg‘𝐺) Σg 𝑊)) |
39 | 2 | grpmndd 18986 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐺 ∈ Mnd) |
40 | 10, 3 | gsumwrev 19409 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word (Base‘𝐺)) → ((oppg‘𝐺) Σg 𝑊) = (𝐺 Σg (reverse‘𝑊))) |
41 | 39, 14, 40 | syl2an 595 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → ((oppg‘𝐺) Σg 𝑊) = (𝐺 Σg (reverse‘𝑊))) |
42 | 16, 38, 41 | 3eqtrd 2784 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = (𝐺 Σg (reverse‘𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ◡ccnv 5699 ran crn 5701 ∘ ccom 5704 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ..^cfzo 13711 ♯chash 14379 Word cword 14562 reversecreverse 14806 Basecbs 17258 Σg cgsu 17500 Mndcmnd 18772 MndHom cmhm 18816 Grpcgrp 18973 invgcminusg 18974 GrpHom cghm 19252 GrpIso cgim 19297 oppgcoppg 19385 SymGrpcsymg 19410 pmTrspcpmtr 19483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-word 14563 df-lsw 14611 df-concat 14619 df-s1 14644 df-substr 14689 df-pfx 14719 df-reverse 14807 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-tset 17330 df-0g 17501 df-gsum 17502 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-efmnd 18904 df-grp 18976 df-minusg 18977 df-ghm 19253 df-gim 19299 df-oppg 19386 df-symg 19411 df-pmtr 19484 |
This theorem is referenced by: psgnuni 19541 |
Copyright terms: Public domain | W3C validator |