Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symgtrinv | Structured version Visualization version GIF version |
Description: To invert a permutation represented as a sequence of transpositions, reverse the sequence. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
Ref | Expression |
---|---|
symgtrinv.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
symgtrinv.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
symgtrinv.i | ⊢ 𝐼 = (invg‘𝐺) |
Ref | Expression |
---|---|
symgtrinv | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = (𝐺 Σg (reverse‘𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgtrinv.g | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐷) | |
2 | 1 | symggrp 19104 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → 𝐺 ∈ Grp) |
3 | eqid 2737 | . . . . 5 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
4 | symgtrinv.i | . . . . 5 ⊢ 𝐼 = (invg‘𝐺) | |
5 | 3, 4 | invoppggim 19063 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso (oppg‘𝐺))) |
6 | gimghm 18976 | . . . 4 ⊢ (𝐼 ∈ (𝐺 GrpIso (oppg‘𝐺)) → 𝐼 ∈ (𝐺 GrpHom (oppg‘𝐺))) | |
7 | ghmmhm 18940 | . . . 4 ⊢ (𝐼 ∈ (𝐺 GrpHom (oppg‘𝐺)) → 𝐼 ∈ (𝐺 MndHom (oppg‘𝐺))) | |
8 | 2, 5, 6, 7 | 4syl 19 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐼 ∈ (𝐺 MndHom (oppg‘𝐺))) |
9 | symgtrinv.t | . . . . . 6 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
10 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
11 | 9, 1, 10 | symgtrf 19173 | . . . . 5 ⊢ 𝑇 ⊆ (Base‘𝐺) |
12 | sswrd 14329 | . . . . 5 ⊢ (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺)) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ Word 𝑇 ⊆ Word (Base‘𝐺) |
14 | 13 | sseli 3931 | . . 3 ⊢ (𝑊 ∈ Word 𝑇 → 𝑊 ∈ Word (Base‘𝐺)) |
15 | 10 | gsumwmhm 18580 | . . 3 ⊢ ((𝐼 ∈ (𝐺 MndHom (oppg‘𝐺)) ∧ 𝑊 ∈ Word (Base‘𝐺)) → (𝐼‘(𝐺 Σg 𝑊)) = ((oppg‘𝐺) Σg (𝐼 ∘ 𝑊))) |
16 | 8, 14, 15 | syl2an 597 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = ((oppg‘𝐺) Σg (𝐼 ∘ 𝑊))) |
17 | 10, 4 | grpinvf 18722 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → 𝐼:(Base‘𝐺)⟶(Base‘𝐺)) |
18 | 2, 17 | syl 17 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → 𝐼:(Base‘𝐺)⟶(Base‘𝐺)) |
19 | wrdf 14326 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑇 → 𝑊:(0..^(♯‘𝑊))⟶𝑇) | |
20 | 19 | adantl 483 | . . . . . . 7 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → 𝑊:(0..^(♯‘𝑊))⟶𝑇) |
21 | fss 6672 | . . . . . . 7 ⊢ ((𝑊:(0..^(♯‘𝑊))⟶𝑇 ∧ 𝑇 ⊆ (Base‘𝐺)) → 𝑊:(0..^(♯‘𝑊))⟶(Base‘𝐺)) | |
22 | 20, 11, 21 | sylancl 587 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → 𝑊:(0..^(♯‘𝑊))⟶(Base‘𝐺)) |
23 | fco 6679 | . . . . . 6 ⊢ ((𝐼:(Base‘𝐺)⟶(Base‘𝐺) ∧ 𝑊:(0..^(♯‘𝑊))⟶(Base‘𝐺)) → (𝐼 ∘ 𝑊):(0..^(♯‘𝑊))⟶(Base‘𝐺)) | |
24 | 18, 22, 23 | syl2an2r 683 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼 ∘ 𝑊):(0..^(♯‘𝑊))⟶(Base‘𝐺)) |
25 | 24 | ffnd 6656 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼 ∘ 𝑊) Fn (0..^(♯‘𝑊))) |
26 | 20 | ffnd 6656 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → 𝑊 Fn (0..^(♯‘𝑊))) |
27 | fvco2 6925 | . . . . . 6 ⊢ ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐼 ∘ 𝑊)‘𝑥) = (𝐼‘(𝑊‘𝑥))) | |
28 | 26, 27 | sylan 581 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐼 ∘ 𝑊)‘𝑥) = (𝐼‘(𝑊‘𝑥))) |
29 | 20 | ffvelcdmda 7021 | . . . . . . 7 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑥) ∈ 𝑇) |
30 | 11, 29 | sselid 3933 | . . . . . 6 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑥) ∈ (Base‘𝐺)) |
31 | 1, 10, 4 | symginv 19106 | . . . . . 6 ⊢ ((𝑊‘𝑥) ∈ (Base‘𝐺) → (𝐼‘(𝑊‘𝑥)) = ◡(𝑊‘𝑥)) |
32 | 30, 31 | syl 17 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝐼‘(𝑊‘𝑥)) = ◡(𝑊‘𝑥)) |
33 | eqid 2737 | . . . . . . 7 ⊢ (pmTrsp‘𝐷) = (pmTrsp‘𝐷) | |
34 | 33, 9 | pmtrfcnv 19168 | . . . . . 6 ⊢ ((𝑊‘𝑥) ∈ 𝑇 → ◡(𝑊‘𝑥) = (𝑊‘𝑥)) |
35 | 29, 34 | syl 17 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ◡(𝑊‘𝑥) = (𝑊‘𝑥)) |
36 | 28, 32, 35 | 3eqtrd 2781 | . . . 4 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐼 ∘ 𝑊)‘𝑥) = (𝑊‘𝑥)) |
37 | 25, 26, 36 | eqfnfvd 6972 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼 ∘ 𝑊) = 𝑊) |
38 | 37 | oveq2d 7357 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → ((oppg‘𝐺) Σg (𝐼 ∘ 𝑊)) = ((oppg‘𝐺) Σg 𝑊)) |
39 | 2 | grpmndd 18685 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐺 ∈ Mnd) |
40 | 10, 3 | gsumwrev 19069 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word (Base‘𝐺)) → ((oppg‘𝐺) Σg 𝑊) = (𝐺 Σg (reverse‘𝑊))) |
41 | 39, 14, 40 | syl2an 597 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → ((oppg‘𝐺) Σg 𝑊) = (𝐺 Σg (reverse‘𝑊))) |
42 | 16, 38, 41 | 3eqtrd 2781 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = (𝐺 Σg (reverse‘𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ⊆ wss 3901 ◡ccnv 5623 ran crn 5625 ∘ ccom 5628 Fn wfn 6478 ⟶wf 6479 ‘cfv 6483 (class class class)co 7341 0cc0 10976 ..^cfzo 13487 ♯chash 14149 Word cword 14321 reversecreverse 14569 Basecbs 17009 Σg cgsu 17248 Mndcmnd 18482 MndHom cmhm 18525 Grpcgrp 18673 invgcminusg 18674 GrpHom cghm 18927 GrpIso cgim 18969 oppgcoppg 19045 SymGrpcsymg 19070 pmTrspcpmtr 19145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-tpos 8116 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-2o 8372 df-er 8573 df-map 8692 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-xnn0 12411 df-z 12425 df-uz 12688 df-fz 13345 df-fzo 13488 df-seq 13827 df-hash 14150 df-word 14322 df-lsw 14370 df-concat 14378 df-s1 14403 df-substr 14452 df-pfx 14482 df-reverse 14570 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-tset 17078 df-0g 17249 df-gsum 17250 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-mhm 18527 df-submnd 18528 df-efmnd 18604 df-grp 18676 df-minusg 18677 df-ghm 18928 df-gim 18971 df-oppg 19046 df-symg 19071 df-pmtr 19146 |
This theorem is referenced by: psgnuni 19203 |
Copyright terms: Public domain | W3C validator |