| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgtrinv | Structured version Visualization version GIF version | ||
| Description: To invert a permutation represented as a sequence of transpositions, reverse the sequence. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| symgtrinv.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
| symgtrinv.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
| symgtrinv.i | ⊢ 𝐼 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| symgtrinv | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = (𝐺 Σg (reverse‘𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgtrinv.g | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐷) | |
| 2 | 1 | symggrp 19279 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → 𝐺 ∈ Grp) |
| 3 | eqid 2729 | . . . . 5 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
| 4 | symgtrinv.i | . . . . 5 ⊢ 𝐼 = (invg‘𝐺) | |
| 5 | 3, 4 | invoppggim 19239 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso (oppg‘𝐺))) |
| 6 | gimghm 19143 | . . . 4 ⊢ (𝐼 ∈ (𝐺 GrpIso (oppg‘𝐺)) → 𝐼 ∈ (𝐺 GrpHom (oppg‘𝐺))) | |
| 7 | ghmmhm 19105 | . . . 4 ⊢ (𝐼 ∈ (𝐺 GrpHom (oppg‘𝐺)) → 𝐼 ∈ (𝐺 MndHom (oppg‘𝐺))) | |
| 8 | 2, 5, 6, 7 | 4syl 19 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐼 ∈ (𝐺 MndHom (oppg‘𝐺))) |
| 9 | symgtrinv.t | . . . . . 6 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 11 | 9, 1, 10 | symgtrf 19348 | . . . . 5 ⊢ 𝑇 ⊆ (Base‘𝐺) |
| 12 | sswrd 14429 | . . . . 5 ⊢ (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺)) | |
| 13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ Word 𝑇 ⊆ Word (Base‘𝐺) |
| 14 | 13 | sseli 3931 | . . 3 ⊢ (𝑊 ∈ Word 𝑇 → 𝑊 ∈ Word (Base‘𝐺)) |
| 15 | 10 | gsumwmhm 18719 | . . 3 ⊢ ((𝐼 ∈ (𝐺 MndHom (oppg‘𝐺)) ∧ 𝑊 ∈ Word (Base‘𝐺)) → (𝐼‘(𝐺 Σg 𝑊)) = ((oppg‘𝐺) Σg (𝐼 ∘ 𝑊))) |
| 16 | 8, 14, 15 | syl2an 596 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = ((oppg‘𝐺) Σg (𝐼 ∘ 𝑊))) |
| 17 | 10, 4 | grpinvf 18865 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → 𝐼:(Base‘𝐺)⟶(Base‘𝐺)) |
| 18 | 2, 17 | syl 17 | . . . . . 6 ⊢ (𝐷 ∈ 𝑉 → 𝐼:(Base‘𝐺)⟶(Base‘𝐺)) |
| 19 | wrdf 14425 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑇 → 𝑊:(0..^(♯‘𝑊))⟶𝑇) | |
| 20 | 19 | adantl 481 | . . . . . . 7 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → 𝑊:(0..^(♯‘𝑊))⟶𝑇) |
| 21 | fss 6668 | . . . . . . 7 ⊢ ((𝑊:(0..^(♯‘𝑊))⟶𝑇 ∧ 𝑇 ⊆ (Base‘𝐺)) → 𝑊:(0..^(♯‘𝑊))⟶(Base‘𝐺)) | |
| 22 | 20, 11, 21 | sylancl 586 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → 𝑊:(0..^(♯‘𝑊))⟶(Base‘𝐺)) |
| 23 | fco 6676 | . . . . . 6 ⊢ ((𝐼:(Base‘𝐺)⟶(Base‘𝐺) ∧ 𝑊:(0..^(♯‘𝑊))⟶(Base‘𝐺)) → (𝐼 ∘ 𝑊):(0..^(♯‘𝑊))⟶(Base‘𝐺)) | |
| 24 | 18, 22, 23 | syl2an2r 685 | . . . . 5 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼 ∘ 𝑊):(0..^(♯‘𝑊))⟶(Base‘𝐺)) |
| 25 | 24 | ffnd 6653 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼 ∘ 𝑊) Fn (0..^(♯‘𝑊))) |
| 26 | 20 | ffnd 6653 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → 𝑊 Fn (0..^(♯‘𝑊))) |
| 27 | fvco2 6920 | . . . . . 6 ⊢ ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐼 ∘ 𝑊)‘𝑥) = (𝐼‘(𝑊‘𝑥))) | |
| 28 | 26, 27 | sylan 580 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐼 ∘ 𝑊)‘𝑥) = (𝐼‘(𝑊‘𝑥))) |
| 29 | 20 | ffvelcdmda 7018 | . . . . . . 7 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑥) ∈ 𝑇) |
| 30 | 11, 29 | sselid 3933 | . . . . . 6 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑥) ∈ (Base‘𝐺)) |
| 31 | 1, 10, 4 | symginv 19281 | . . . . . 6 ⊢ ((𝑊‘𝑥) ∈ (Base‘𝐺) → (𝐼‘(𝑊‘𝑥)) = ◡(𝑊‘𝑥)) |
| 32 | 30, 31 | syl 17 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝐼‘(𝑊‘𝑥)) = ◡(𝑊‘𝑥)) |
| 33 | eqid 2729 | . . . . . . 7 ⊢ (pmTrsp‘𝐷) = (pmTrsp‘𝐷) | |
| 34 | 33, 9 | pmtrfcnv 19343 | . . . . . 6 ⊢ ((𝑊‘𝑥) ∈ 𝑇 → ◡(𝑊‘𝑥) = (𝑊‘𝑥)) |
| 35 | 29, 34 | syl 17 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ◡(𝑊‘𝑥) = (𝑊‘𝑥)) |
| 36 | 28, 32, 35 | 3eqtrd 2768 | . . . 4 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐼 ∘ 𝑊)‘𝑥) = (𝑊‘𝑥)) |
| 37 | 25, 26, 36 | eqfnfvd 6968 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼 ∘ 𝑊) = 𝑊) |
| 38 | 37 | oveq2d 7365 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → ((oppg‘𝐺) Σg (𝐼 ∘ 𝑊)) = ((oppg‘𝐺) Σg 𝑊)) |
| 39 | 2 | grpmndd 18825 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐺 ∈ Mnd) |
| 40 | 10, 3 | gsumwrev 19245 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word (Base‘𝐺)) → ((oppg‘𝐺) Σg 𝑊) = (𝐺 Σg (reverse‘𝑊))) |
| 41 | 39, 14, 40 | syl2an 596 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → ((oppg‘𝐺) Σg 𝑊) = (𝐺 Σg (reverse‘𝑊))) |
| 42 | 16, 38, 41 | 3eqtrd 2768 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇) → (𝐼‘(𝐺 Σg 𝑊)) = (𝐺 Σg (reverse‘𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ◡ccnv 5618 ran crn 5620 ∘ ccom 5623 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 0cc0 11009 ..^cfzo 13557 ♯chash 14237 Word cword 14420 reversecreverse 14664 Basecbs 17120 Σg cgsu 17344 Mndcmnd 18608 MndHom cmhm 18655 Grpcgrp 18812 invgcminusg 18813 GrpHom cghm 19091 GrpIso cgim 19136 oppgcoppg 19224 SymGrpcsymg 19248 pmTrspcpmtr 19320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14503 df-substr 14548 df-pfx 14578 df-reverse 14665 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-tset 17180 df-0g 17345 df-gsum 17346 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-efmnd 18743 df-grp 18815 df-minusg 18816 df-ghm 19092 df-gim 19138 df-oppg 19225 df-symg 19249 df-pmtr 19321 |
| This theorem is referenced by: psgnuni 19378 |
| Copyright terms: Public domain | W3C validator |