MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitsubm Structured version   Visualization version   GIF version

Theorem unitsubm 18870
Description: The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
unitsubm.1 𝑈 = (Unit‘𝑅)
unitsubm.2 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
unitsubm (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀))

Proof of Theorem unitsubm
StepHypRef Expression
1 eqid 2804 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 unitsubm.1 . . . 4 𝑈 = (Unit‘𝑅)
31, 2unitss 18860 . . 3 𝑈 ⊆ (Base‘𝑅)
43a1i 11 . 2 (𝑅 ∈ Ring → 𝑈 ⊆ (Base‘𝑅))
5 eqid 2804 . . 3 (1r𝑅) = (1r𝑅)
62, 51unit 18858 . 2 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
7 unitsubm.2 . . . . 5 𝑀 = (mulGrp‘𝑅)
87oveq1i 6882 . . . 4 (𝑀s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
92, 8unitgrp 18867 . . 3 (𝑅 ∈ Ring → (𝑀s 𝑈) ∈ Grp)
10 grpmnd 17632 . . 3 ((𝑀s 𝑈) ∈ Grp → (𝑀s 𝑈) ∈ Mnd)
119, 10syl 17 . 2 (𝑅 ∈ Ring → (𝑀s 𝑈) ∈ Mnd)
127ringmgp 18753 . . 3 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
137, 1mgpbas 18695 . . . 4 (Base‘𝑅) = (Base‘𝑀)
147, 5ringidval 18703 . . . 4 (1r𝑅) = (0g𝑀)
15 eqid 2804 . . . 4 (𝑀s 𝑈) = (𝑀s 𝑈)
1613, 14, 15issubm2 17551 . . 3 (𝑀 ∈ Mnd → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝑈 ∧ (𝑀s 𝑈) ∈ Mnd)))
1712, 16syl 17 . 2 (𝑅 ∈ Ring → (𝑈 ∈ (SubMnd‘𝑀) ↔ (𝑈 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝑈 ∧ (𝑀s 𝑈) ∈ Mnd)))
184, 6, 11, 17mpbir3and 1435 1 (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  w3a 1100   = wceq 1637  wcel 2156  wss 3767  cfv 6099  (class class class)co 6872  Basecbs 16066  s cress 16067  Mndcmnd 17497  SubMndcsubmnd 17537  Grpcgrp 17625  mulGrpcmgp 18689  1rcur 18701  Ringcrg 18747  Unitcui 18839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2782  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5094  ax-un 7177  ax-cnex 10275  ax-resscn 10276  ax-1cn 10277  ax-icn 10278  ax-addcl 10279  ax-addrcl 10280  ax-mulcl 10281  ax-mulrcl 10282  ax-mulcom 10283  ax-addass 10284  ax-mulass 10285  ax-distr 10286  ax-i2m1 10287  ax-1ne0 10288  ax-1rid 10289  ax-rnegex 10290  ax-rrecex 10291  ax-cnre 10292  ax-pre-lttri 10293  ax-pre-lttrn 10294  ax-pre-ltadd 10295  ax-pre-mulgt0 10296
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2791  df-cleq 2797  df-clel 2800  df-nfc 2935  df-ne 2977  df-nel 3080  df-ral 3099  df-rex 3100  df-reu 3101  df-rmo 3102  df-rab 3103  df-v 3391  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4115  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5217  df-eprel 5222  df-po 5230  df-so 5231  df-fr 5268  df-we 5270  df-xp 5315  df-rel 5316  df-cnv 5317  df-co 5318  df-dm 5319  df-rn 5320  df-res 5321  df-ima 5322  df-pred 5891  df-ord 5937  df-on 5938  df-lim 5939  df-suc 5940  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6833  df-ov 6875  df-oprab 6876  df-mpt2 6877  df-om 7294  df-tpos 7585  df-wrecs 7640  df-recs 7702  df-rdg 7740  df-er 7977  df-en 8191  df-dom 8192  df-sdom 8193  df-pnf 10359  df-mnf 10360  df-xr 10361  df-ltxr 10362  df-le 10363  df-sub 10551  df-neg 10552  df-nn 11304  df-2 11362  df-3 11363  df-ndx 16069  df-slot 16070  df-base 16072  df-sets 16073  df-ress 16074  df-plusg 16164  df-mulr 16165  df-0g 16305  df-mgm 17445  df-sgrp 17487  df-mnd 17498  df-submnd 17539  df-grp 17628  df-mgp 18690  df-ur 18702  df-ring 18749  df-oppr 18823  df-dvdsr 18841  df-unit 18842
This theorem is referenced by:  zrhpsgnmhm  20135  nrgtdrg  22708  amgmlem  24928  dchrfi  25192  dchrghm  25193  dchrabs  25197  lgseisenlem3  25314  lgseisenlem4  25315  idomodle  38273  proot1ex  38278  amgmwlem  43117  amgmlemALT  43118
  Copyright terms: Public domain W3C validator