Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumccatsymgsn | Structured version Visualization version GIF version |
Description: Homomorphic property of composites of permutations with a singleton. (Contributed by AV, 20-Jan-2019.) |
Ref | Expression |
---|---|
gsumccatsymgsn.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
gsumccatsymgsn.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
gsumccatsymgsn | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐺 Σg (𝑊 ++ 〈“𝑍”〉)) = ((𝐺 Σg 𝑊) ∘ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumccatsymgsn.g | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | 1 | symggrp 19006 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
3 | 2 | grpmndd 18587 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) |
4 | gsumccatsymgsn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
5 | eqid 2738 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
6 | 4, 5 | gsumccatsn 18480 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐺 Σg (𝑊 ++ 〈“𝑍”〉)) = ((𝐺 Σg 𝑊)(+g‘𝐺)𝑍)) |
7 | 3, 6 | syl3an1 1162 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐺 Σg (𝑊 ++ 〈“𝑍”〉)) = ((𝐺 Σg 𝑊)(+g‘𝐺)𝑍)) |
8 | 3 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝐺 ∈ Mnd) |
9 | simp2 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑊 ∈ Word 𝐵) | |
10 | 4 | gsumwcl 18475 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝐺 Σg 𝑊) ∈ 𝐵) |
11 | 8, 9, 10 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐺 Σg 𝑊) ∈ 𝐵) |
12 | simp3 1137 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ 𝐵) | |
13 | 1, 4, 5 | symgov 18989 | . . 3 ⊢ (((𝐺 Σg 𝑊) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝐺 Σg 𝑊)(+g‘𝐺)𝑍) = ((𝐺 Σg 𝑊) ∘ 𝑍)) |
14 | 11, 12, 13 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝐺 Σg 𝑊)(+g‘𝐺)𝑍) = ((𝐺 Σg 𝑊) ∘ 𝑍)) |
15 | 7, 14 | eqtrd 2778 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐺 Σg (𝑊 ++ 〈“𝑍”〉)) = ((𝐺 Σg 𝑊) ∘ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∘ ccom 5595 ‘cfv 6435 (class class class)co 7277 Word cword 14215 ++ cconcat 14271 〈“cs1 14298 Basecbs 16910 +gcplusg 16960 Σg cgsu 17149 Mndcmnd 18383 SymGrpcsymg 18972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-cnex 10925 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 ax-pre-mulgt0 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-1o 8295 df-er 8496 df-map 8615 df-en 8732 df-dom 8733 df-sdom 8734 df-fin 8735 df-card 9695 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-5 12037 df-6 12038 df-7 12039 df-8 12040 df-9 12041 df-n0 12232 df-z 12318 df-uz 12581 df-fz 13238 df-fzo 13381 df-seq 13720 df-hash 14043 df-word 14216 df-concat 14272 df-s1 14299 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-tset 16979 df-0g 17150 df-gsum 17151 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-submnd 18429 df-efmnd 18506 df-grp 18578 df-symg 18973 |
This theorem is referenced by: gsmsymgrfixlem1 19033 gsmsymgreqlem1 19036 |
Copyright terms: Public domain | W3C validator |