| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grurankcld | Structured version Visualization version GIF version | ||
| Description: Grothendieck universes are closed under the rank function. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
| Ref | Expression |
|---|---|
| grurankcld.1 | ⊢ (𝜑 → 𝐺 ∈ Univ) |
| grurankcld.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐺) |
| Ref | Expression |
|---|---|
| grurankcld | ⊢ (𝜑 → (rank‘𝐴) ∈ 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grurankcld.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐺) | |
| 2 | grurankcld.1 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Univ) | |
| 3 | 2 | elexd 3460 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ V) |
| 4 | unir1 9709 | . . . . . 6 ⊢ ∪ (𝑅1 “ On) = V | |
| 5 | 3, 4 | eleqtrrdi 2839 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ ∪ (𝑅1 “ On)) |
| 6 | eqid 2729 | . . . . . 6 ⊢ (𝐺 ∩ On) = (𝐺 ∩ On) | |
| 7 | 6 | grur1 10714 | . . . . 5 ⊢ ((𝐺 ∈ Univ ∧ 𝐺 ∈ ∪ (𝑅1 “ On)) → 𝐺 = (𝑅1‘(𝐺 ∩ On))) |
| 8 | 2, 5, 7 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑅1‘(𝐺 ∩ On))) |
| 9 | 1, 8 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝑅1‘(𝐺 ∩ On))) |
| 10 | 9 | r1rankcld 44208 | . 2 ⊢ (𝜑 → (rank‘𝐴) ∈ (𝑅1‘(𝐺 ∩ On))) |
| 11 | 10, 8 | eleqtrrd 2831 | 1 ⊢ (𝜑 → (rank‘𝐴) ∈ 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 ∪ cuni 4858 “ cima 5622 Oncon0 6307 ‘cfv 6482 𝑅1cr1 9658 rankcrnk 9659 Univcgru 10684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-reg 9484 ax-inf2 9537 ax-ac2 10357 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-tc 9633 df-r1 9660 df-rank 9661 df-card 9835 df-cf 9837 df-acn 9838 df-ac 10010 df-wina 10578 df-ina 10579 df-gru 10685 |
| This theorem is referenced by: gruscottcld 44226 |
| Copyright terms: Public domain | W3C validator |