| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grurankcld | Structured version Visualization version GIF version | ||
| Description: Grothendieck universes are closed under the rank function. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
| Ref | Expression |
|---|---|
| grurankcld.1 | ⊢ (𝜑 → 𝐺 ∈ Univ) |
| grurankcld.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐺) |
| Ref | Expression |
|---|---|
| grurankcld | ⊢ (𝜑 → (rank‘𝐴) ∈ 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grurankcld.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐺) | |
| 2 | grurankcld.1 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Univ) | |
| 3 | 2 | elexd 3460 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ V) |
| 4 | unir1 9706 | . . . . . 6 ⊢ ∪ (𝑅1 “ On) = V | |
| 5 | 3, 4 | eleqtrrdi 2842 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ ∪ (𝑅1 “ On)) |
| 6 | eqid 2731 | . . . . . 6 ⊢ (𝐺 ∩ On) = (𝐺 ∩ On) | |
| 7 | 6 | grur1 10711 | . . . . 5 ⊢ ((𝐺 ∈ Univ ∧ 𝐺 ∈ ∪ (𝑅1 “ On)) → 𝐺 = (𝑅1‘(𝐺 ∩ On))) |
| 8 | 2, 5, 7 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑅1‘(𝐺 ∩ On))) |
| 9 | 1, 8 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝑅1‘(𝐺 ∩ On))) |
| 10 | 9 | r1rankcld 44334 | . 2 ⊢ (𝜑 → (rank‘𝐴) ∈ (𝑅1‘(𝐺 ∩ On))) |
| 11 | 10, 8 | eleqtrrd 2834 | 1 ⊢ (𝜑 → (rank‘𝐴) ∈ 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ∪ cuni 4856 “ cima 5617 Oncon0 6306 ‘cfv 6481 𝑅1cr1 9655 rankcrnk 9656 Univcgru 10681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-reg 9478 ax-inf2 9531 ax-ac2 10354 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-tc 9625 df-r1 9657 df-rank 9658 df-card 9832 df-cf 9834 df-acn 9835 df-ac 10007 df-wina 10575 df-ina 10576 df-gru 10682 |
| This theorem is referenced by: gruscottcld 44352 |
| Copyright terms: Public domain | W3C validator |