![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grurankcld | Structured version Visualization version GIF version |
Description: Grothendieck universes are closed under the rank function. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
Ref | Expression |
---|---|
grurankcld.1 | β’ (π β πΊ β Univ) |
grurankcld.2 | β’ (π β π΄ β πΊ) |
Ref | Expression |
---|---|
grurankcld | β’ (π β (rankβπ΄) β πΊ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grurankcld.2 | . . . 4 β’ (π β π΄ β πΊ) | |
2 | grurankcld.1 | . . . . 5 β’ (π β πΊ β Univ) | |
3 | 2 | elexd 3494 | . . . . . 6 β’ (π β πΊ β V) |
4 | unir1 9807 | . . . . . 6 β’ βͺ (π 1 β On) = V | |
5 | 3, 4 | eleqtrrdi 2844 | . . . . 5 β’ (π β πΊ β βͺ (π 1 β On)) |
6 | eqid 2732 | . . . . . 6 β’ (πΊ β© On) = (πΊ β© On) | |
7 | 6 | grur1 10814 | . . . . 5 β’ ((πΊ β Univ β§ πΊ β βͺ (π 1 β On)) β πΊ = (π 1β(πΊ β© On))) |
8 | 2, 5, 7 | syl2anc 584 | . . . 4 β’ (π β πΊ = (π 1β(πΊ β© On))) |
9 | 1, 8 | eleqtrd 2835 | . . 3 β’ (π β π΄ β (π 1β(πΊ β© On))) |
10 | 9 | r1rankcld 42980 | . 2 β’ (π β (rankβπ΄) β (π 1β(πΊ β© On))) |
11 | 10, 8 | eleqtrrd 2836 | 1 β’ (π β (rankβπ΄) β πΊ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 β© cin 3947 βͺ cuni 4908 β cima 5679 Oncon0 6364 βcfv 6543 π 1cr1 9756 rankcrnk 9757 Univcgru 10784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-reg 9586 ax-inf2 9635 ax-ac2 10457 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-tc 9731 df-r1 9758 df-rank 9759 df-card 9933 df-cf 9935 df-acn 9936 df-ac 10110 df-wina 10678 df-ina 10679 df-gru 10785 |
This theorem is referenced by: gruscottcld 42998 |
Copyright terms: Public domain | W3C validator |