Step | Hyp | Ref
| Expression |
1 | | simp11l 1285 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β πΎ β HL) |
2 | 1 | hllatd 37855 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β πΎ β Lat) |
3 | | simp13l 1289 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β π β π΄) |
4 | | eqid 2737 |
. . . . 5
β’
(BaseβπΎ) =
(BaseβπΎ) |
5 | | cdleme35.a |
. . . . 5
β’ π΄ = (AtomsβπΎ) |
6 | 4, 5 | atbase 37780 |
. . . 4
β’ (π β π΄ β π β (BaseβπΎ)) |
7 | 3, 6 | syl 17 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β π β (BaseβπΎ)) |
8 | | simp2rl 1243 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β π
β π΄) |
9 | | simp11 1204 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β (πΎ β HL β§ π β π»)) |
10 | | simp12 1205 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β (π β π΄ β§ Β¬ π β€ π)) |
11 | | simp2l 1200 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β π β π) |
12 | | cdleme35.l |
. . . . . 6
β’ β€ =
(leβπΎ) |
13 | | cdleme35.j |
. . . . . 6
β’ β¨ =
(joinβπΎ) |
14 | | cdleme35.m |
. . . . . 6
β’ β§ =
(meetβπΎ) |
15 | | cdleme35.h |
. . . . . 6
β’ π» = (LHypβπΎ) |
16 | | cdleme35.u |
. . . . . 6
β’ π = ((π β¨ π) β§ π) |
17 | 12, 13, 14, 5, 15, 16 | cdleme0a 38703 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π β π΄) |
18 | 9, 10, 3, 11, 17 | syl112anc 1375 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β π β π΄) |
19 | 4, 13, 5 | hlatjcl 37858 |
. . . 4
β’ ((πΎ β HL β§ π
β π΄ β§ π β π΄) β (π
β¨ π) β (BaseβπΎ)) |
20 | 1, 8, 18, 19 | syl3anc 1372 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β (π
β¨ π) β (BaseβπΎ)) |
21 | 4, 12, 13 | latlej1 18344 |
. . 3
β’ ((πΎ β Lat β§ π β (BaseβπΎ) β§ (π
β¨ π) β (BaseβπΎ)) β π β€ (π β¨ (π
β¨ π))) |
22 | 2, 7, 20, 21 | syl3anc 1372 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β π β€ (π β¨ (π
β¨ π))) |
23 | | simp12l 1287 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β π β π΄) |
24 | 4, 5 | atbase 37780 |
. . . . . . 7
β’ (π β π΄ β π β (BaseβπΎ)) |
25 | 23, 24 | syl 17 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β π β (BaseβπΎ)) |
26 | 4, 5 | atbase 37780 |
. . . . . . 7
β’ (π
β π΄ β π
β (BaseβπΎ)) |
27 | 8, 26 | syl 17 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β π
β (BaseβπΎ)) |
28 | 4, 13 | latjcl 18335 |
. . . . . 6
β’ ((πΎ β Lat β§ π β (BaseβπΎ) β§ π
β (BaseβπΎ)) β (π β¨ π
) β (BaseβπΎ)) |
29 | 2, 25, 27, 28 | syl3anc 1372 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β (π β¨ π
) β (BaseβπΎ)) |
30 | | simp11r 1286 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β π β π») |
31 | 4, 15 | lhpbase 38490 |
. . . . . 6
β’ (π β π» β π β (BaseβπΎ)) |
32 | 30, 31 | syl 17 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β π β (BaseβπΎ)) |
33 | 4, 14 | latmcl 18336 |
. . . . 5
β’ ((πΎ β Lat β§ (π β¨ π
) β (BaseβπΎ) β§ π β (BaseβπΎ)) β ((π β¨ π
) β§ π) β (BaseβπΎ)) |
34 | 2, 29, 32, 33 | syl3anc 1372 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β ((π β¨ π
) β§ π) β (BaseβπΎ)) |
35 | 4, 13 | latjcl 18335 |
. . . . 5
β’ ((πΎ β Lat β§ (π β¨ π
) β (BaseβπΎ) β§ π β (BaseβπΎ)) β ((π β¨ π
) β¨ π) β (BaseβπΎ)) |
36 | 2, 29, 7, 35 | syl3anc 1372 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β ((π β¨ π
) β¨ π) β (BaseβπΎ)) |
37 | 4, 12, 14 | latmle1 18360 |
. . . . 5
β’ ((πΎ β Lat β§ (π β¨ π
) β (BaseβπΎ) β§ π β (BaseβπΎ)) β ((π β¨ π
) β§ π) β€ (π β¨ π
)) |
38 | 2, 29, 32, 37 | syl3anc 1372 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β ((π β¨ π
) β§ π) β€ (π β¨ π
)) |
39 | 4, 12, 13 | latlej1 18344 |
. . . . 5
β’ ((πΎ β Lat β§ (π β¨ π
) β (BaseβπΎ) β§ π β (BaseβπΎ)) β (π β¨ π
) β€ ((π β¨ π
) β¨ π)) |
40 | 2, 29, 7, 39 | syl3anc 1372 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β (π β¨ π
) β€ ((π β¨ π
) β¨ π)) |
41 | 4, 12, 2, 34, 29, 36, 38, 40 | lattrd 18342 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β ((π β¨ π
) β§ π) β€ ((π β¨ π
) β¨ π)) |
42 | 16 | oveq2i 7373 |
. . . . . 6
β’ (π β¨ π) = (π β¨ ((π β¨ π) β§ π)) |
43 | 4, 13, 5 | hlatjcl 37858 |
. . . . . . . . 9
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) β (BaseβπΎ)) |
44 | 1, 23, 3, 43 | syl3anc 1372 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β (π β¨ π) β (BaseβπΎ)) |
45 | 12, 13, 5 | hlatlej2 37867 |
. . . . . . . . 9
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π β€ (π β¨ π)) |
46 | 1, 23, 3, 45 | syl3anc 1372 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β π β€ (π β¨ π)) |
47 | 4, 12, 13, 14, 5 | atmod3i1 38356 |
. . . . . . . 8
β’ ((πΎ β HL β§ (π β π΄ β§ (π β¨ π) β (BaseβπΎ) β§ π β (BaseβπΎ)) β§ π β€ (π β¨ π)) β (π β¨ ((π β¨ π) β§ π)) = ((π β¨ π) β§ (π β¨ π))) |
48 | 1, 3, 44, 32, 46, 47 | syl131anc 1384 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β (π β¨ ((π β¨ π) β§ π)) = ((π β¨ π) β§ (π β¨ π))) |
49 | | simp13 1206 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β (π β π΄ β§ Β¬ π β€ π)) |
50 | | eqid 2737 |
. . . . . . . . . 10
β’
(1.βπΎ) =
(1.βπΎ) |
51 | 12, 13, 50, 5, 15 | lhpjat2 38513 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β¨ π) = (1.βπΎ)) |
52 | 9, 49, 51 | syl2anc 585 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β (π β¨ π) = (1.βπΎ)) |
53 | 52 | oveq2d 7378 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β ((π β¨ π) β§ (π β¨ π)) = ((π β¨ π) β§ (1.βπΎ))) |
54 | | hlol 37852 |
. . . . . . . . 9
β’ (πΎ β HL β πΎ β OL) |
55 | 1, 54 | syl 17 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β πΎ β OL) |
56 | 4, 14, 50 | olm11 37718 |
. . . . . . . 8
β’ ((πΎ β OL β§ (π β¨ π) β (BaseβπΎ)) β ((π β¨ π) β§ (1.βπΎ)) = (π β¨ π)) |
57 | 55, 44, 56 | syl2anc 585 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β ((π β¨ π) β§ (1.βπΎ)) = (π β¨ π)) |
58 | 48, 53, 57 | 3eqtrd 2781 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β (π β¨ ((π β¨ π) β§ π)) = (π β¨ π)) |
59 | 42, 58 | eqtrid 2789 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β (π β¨ π) = (π β¨ π)) |
60 | 59 | oveq2d 7378 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β (π
β¨ (π β¨ π)) = (π
β¨ (π β¨ π))) |
61 | 13, 5 | hlatj12 37862 |
. . . . 5
β’ ((πΎ β HL β§ (π β π΄ β§ π
β π΄ β§ π β π΄)) β (π β¨ (π
β¨ π)) = (π
β¨ (π β¨ π))) |
62 | 1, 3, 8, 18, 61 | syl13anc 1373 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β (π β¨ (π
β¨ π)) = (π
β¨ (π β¨ π))) |
63 | 13, 5 | hlatjcom 37859 |
. . . . . . 7
β’ ((πΎ β HL β§ π β π΄ β§ π
β π΄) β (π β¨ π
) = (π
β¨ π)) |
64 | 1, 23, 8, 63 | syl3anc 1372 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β (π β¨ π
) = (π
β¨ π)) |
65 | 64 | oveq1d 7377 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β ((π β¨ π
) β¨ π) = ((π
β¨ π) β¨ π)) |
66 | 13, 5 | hlatjass 37861 |
. . . . . 6
β’ ((πΎ β HL β§ (π
β π΄ β§ π β π΄ β§ π β π΄)) β ((π
β¨ π) β¨ π) = (π
β¨ (π β¨ π))) |
67 | 1, 8, 23, 3, 66 | syl13anc 1373 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β ((π
β¨ π) β¨ π) = (π
β¨ (π β¨ π))) |
68 | 65, 67 | eqtrd 2777 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β ((π β¨ π
) β¨ π) = (π
β¨ (π β¨ π))) |
69 | 60, 62, 68 | 3eqtr4rd 2788 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β ((π β¨ π
) β¨ π) = (π β¨ (π
β¨ π))) |
70 | 41, 69 | breqtrd 5136 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β ((π β¨ π
) β§ π) β€ (π β¨ (π
β¨ π))) |
71 | 4, 13 | latjcl 18335 |
. . . 4
β’ ((πΎ β Lat β§ π β (BaseβπΎ) β§ (π
β¨ π) β (BaseβπΎ)) β (π β¨ (π
β¨ π)) β (BaseβπΎ)) |
72 | 2, 7, 20, 71 | syl3anc 1372 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β (π β¨ (π
β¨ π)) β (BaseβπΎ)) |
73 | 4, 12, 13 | latjle12 18346 |
. . 3
β’ ((πΎ β Lat β§ (π β (BaseβπΎ) β§ ((π β¨ π
) β§ π) β (BaseβπΎ) β§ (π β¨ (π
β¨ π)) β (BaseβπΎ))) β ((π β€ (π β¨ (π
β¨ π)) β§ ((π β¨ π
) β§ π) β€ (π β¨ (π
β¨ π))) β (π β¨ ((π β¨ π
) β§ π)) β€ (π β¨ (π
β¨ π)))) |
74 | 2, 7, 34, 72, 73 | syl13anc 1373 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β ((π β€ (π β¨ (π
β¨ π)) β§ ((π β¨ π
) β§ π) β€ (π β¨ (π
β¨ π))) β (π β¨ ((π β¨ π
) β§ π)) β€ (π β¨ (π
β¨ π)))) |
75 | 22, 70, 74 | mpbi2and 711 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ Β¬ π
β€ (π β¨ π)) β (π β¨ ((π β¨ π
) β§ π)) β€ (π β¨ (π
β¨ π))) |