MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negcli Structured version   Visualization version   GIF version

Theorem negcli 10639
Description: Closure law for negative. (Contributed by NM, 26-Nov-1994.)
Hypothesis
Ref Expression
negidi.1 𝐴 ∈ ℂ
Assertion
Ref Expression
negcli -𝐴 ∈ ℂ

Proof of Theorem negcli
StepHypRef Expression
1 negidi.1 . 2 𝐴 ∈ ℂ
2 negcl 10570 . 2 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
31, 2ax-mp 5 1 -𝐴 ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2157  cc 10220  -cneg 10555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-po 5231  df-so 5232  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-ltxr 10366  df-sub 10556  df-neg 10557
This theorem is referenced by:  negsubdii  10656  negsubdi2i  10657  div2neg  11038  ofnegsub  11308  neg1cn  11430  sqeqori  13226  bpoly3  15122  gcdaddmlem  15577  iblcnlem1  23892  itgcnlem  23894  negpicn  24553  cosq14gt0  24601  cosq14ge0  24602  cosne0  24615  resinf1o  24621  atandm2  24953  atanlogsublem  24991  tanatan  24995  atantayl2  25014  basellem8  25163  lgsdir2lem1  25399  log2sumbnd  25582  ex-fl  27824  ex-exp  27827  ip0i  28197  ip1ilem  28198  hvmul2negi  28422  normlem0  28483  normlem3  28486  normlem7  28490  normpari  28528  psgnid  30355  quad3  32071  itg2addnclem3  33943  areacirc  33985  sqwvfourb  41177
  Copyright terms: Public domain W3C validator