MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negcli Structured version   Visualization version   GIF version

Theorem negcli 11558
Description: Closure law for negative. (Contributed by NM, 26-Nov-1994.)
Hypothesis
Ref Expression
negidi.1 𝐴 ∈ ℂ
Assertion
Ref Expression
negcli -𝐴 ∈ ℂ

Proof of Theorem negcli
StepHypRef Expression
1 negidi.1 . 2 𝐴 ∈ ℂ
2 negcl 11490 . 2 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
31, 2ax-mp 5 1 -𝐴 ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  cc 11136  -cneg 11475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-ltxr 11283  df-sub 11476  df-neg 11477
This theorem is referenced by:  negsubdii  11575  negsubdi2i  11576  div2neg  11967  ofnegsub  12240  neg1cn  12356  sqeqori  14209  bpoly3  16034  gcdaddmlem  16498  iblcnlem1  25747  itgcnlem  25749  negpicn  26427  cosq14gt0  26475  cosq14ge0  26476  cosne0  26493  resinf1o  26500  atandm2  26839  atanlogsublem  26877  tanatan  26881  atantayl2  26900  basellem8  27050  lgsdir2lem1  27288  addsqnreup  27406  log2sumbnd  27507  ex-fl  30313  ex-exp  30316  ip0i  30691  ip1ilem  30692  hvmul2negi  30914  normlem0  30975  normlem3  30978  normlem7  30982  normpari  31020  quad3  35344  itg2addnclem3  37216  areacirc  37256  sqwvfourb  45680
  Copyright terms: Public domain W3C validator