![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negcli | Structured version Visualization version GIF version |
Description: Closure law for negative. (Contributed by NM, 26-Nov-1994.) |
Ref | Expression |
---|---|
negidi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
negcli | ⊢ -𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | negcl 10570 | . 2 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝐴 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2157 ℂcc 10220 -cneg 10555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-po 5231 df-so 5232 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-ltxr 10366 df-sub 10556 df-neg 10557 |
This theorem is referenced by: negsubdii 10656 negsubdi2i 10657 div2neg 11038 ofnegsub 11308 neg1cn 11430 sqeqori 13226 bpoly3 15122 gcdaddmlem 15577 iblcnlem1 23892 itgcnlem 23894 negpicn 24553 cosq14gt0 24601 cosq14ge0 24602 cosne0 24615 resinf1o 24621 atandm2 24953 atanlogsublem 24991 tanatan 24995 atantayl2 25014 basellem8 25163 lgsdir2lem1 25399 log2sumbnd 25582 ex-fl 27824 ex-exp 27827 ip0i 28197 ip1ilem 28198 hvmul2negi 28422 normlem0 28483 normlem3 28486 normlem7 28490 normpari 28528 psgnid 30355 quad3 32071 itg2addnclem3 33943 areacirc 33985 sqwvfourb 41177 |
Copyright terms: Public domain | W3C validator |