| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negcli | Structured version Visualization version GIF version | ||
| Description: Closure law for negative. (Contributed by NM, 26-Nov-1994.) |
| Ref | Expression |
|---|---|
| negidi.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| negcli | ⊢ -𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | negcl 11427 | . 2 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝐴 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℂcc 11072 -cneg 11412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-ltxr 11219 df-sub 11413 df-neg 11414 |
| This theorem is referenced by: negsubdii 11513 negsubdi2i 11514 div2neg 11911 ofnegsub 12185 neg1cn 12301 sqeqori 14185 bpoly3 16030 gcdaddmlem 16500 iblcnlem1 25695 itgcnlem 25697 negpicn 26377 cosq14gt0 26425 cosq14ge0 26426 cosne0 26444 resinf1o 26451 atandm2 26793 atanlogsublem 26831 tanatan 26835 atantayl2 26854 basellem8 27004 lgsdir2lem1 27242 addsqnreup 27360 log2sumbnd 27461 ex-fl 30382 ex-exp 30385 ip0i 30760 ip1ilem 30761 hvmul2negi 30983 normlem0 31044 normlem3 31047 normlem7 31051 normpari 31089 cos9thpiminplylem2 33779 cos9thpiminplylem5 33782 quad3 35657 itg2addnclem3 37662 areacirc 37702 sqwvfourb 46220 |
| Copyright terms: Public domain | W3C validator |