| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitssre | Structured version Visualization version GIF version | ||
| Description: (0[,]1) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| unitssre | ⊢ (0[,]1) ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11124 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 11122 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | iccssre 13339 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0[,]1) ⊆ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (0[,]1) ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ⊆ wss 3899 (class class class)co 7355 ℝcr 11015 0cc0 11016 1c1 11017 [,]cicc 13258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-i2m1 11084 ax-1ne0 11085 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-icc 13262 |
| This theorem is referenced by: unitsscn 13410 rpnnen 16146 iitopon 24809 dfii2 24812 dfii3 24813 dfii5 24815 iirevcn 24861 iihalf1cn 24863 iihalf1cnOLD 24864 iihalf2cn 24866 iihalf2cnOLD 24867 iimulcnOLD 24872 icchmeoOLD 24876 xrhmeo 24881 icccvx 24885 lebnumii 24902 reparphtiOLD 24934 pcoass 24961 pcorevlem 24963 pcorev2 24965 pi1xfrcnv 24994 vitalilem1 25546 vitalilem4 25549 vitalilem5 25550 vitali 25551 dvlipcn 25936 abelth2 26389 chordthmlem4 26782 chordthmlem5 26783 leibpi 26889 cvxcl 26932 scvxcvx 26933 lgamgulmlem2 26977 ttgcontlem1 28873 axeuclidlem 28951 stcl 32207 probun 34443 probvalrnd 34448 resconn 35301 cvmliftlem8 35347 poimirlem29 37699 poimirlem30 37700 poimirlem31 37701 poimir 37703 broucube 37704 k0004ss1 44258 k0004val0 44261 sqrlearg 45667 salgencntex 46455 eenglngeehlnmlem1 48852 |
| Copyright terms: Public domain | W3C validator |