| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitssre | Structured version Visualization version GIF version | ||
| Description: (0[,]1) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| unitssre | ⊢ (0[,]1) ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11264 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 11262 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | iccssre 13470 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0[,]1) ⊆ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (0[,]1) ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 ⊆ wss 3950 (class class class)co 7432 ℝcr 11155 0cc0 11156 1c1 11157 [,]cicc 13391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-i2m1 11224 ax-1ne0 11225 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-icc 13395 |
| This theorem is referenced by: unitsscn 13541 rpnnen 16264 iitopon 24906 dfii2 24909 dfii3 24910 dfii5 24912 iirevcn 24958 iihalf1cn 24960 iihalf1cnOLD 24961 iihalf2cn 24963 iihalf2cnOLD 24964 iimulcnOLD 24969 icchmeoOLD 24973 xrhmeo 24978 icccvx 24982 lebnumii 24999 reparphtiOLD 25031 pcoass 25058 pcorevlem 25060 pcorev2 25062 pi1xfrcnv 25091 vitalilem1 25644 vitalilem4 25647 vitalilem5 25648 vitali 25649 dvlipcn 26034 abelth2 26487 chordthmlem4 26879 chordthmlem5 26880 leibpi 26986 cvxcl 27029 scvxcvx 27030 lgamgulmlem2 27074 ttgcontlem1 28900 axeuclidlem 28978 stcl 32236 probun 34422 probvalrnd 34427 resconn 35252 cvmliftlem8 35298 poimirlem29 37657 poimirlem30 37658 poimirlem31 37659 poimir 37661 broucube 37662 k0004ss1 44169 k0004val0 44172 sqrlearg 45571 salgencntex 46363 eenglngeehlnmlem1 48663 |
| Copyright terms: Public domain | W3C validator |