![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitssre | Structured version Visualization version GIF version |
Description: (0[,]1) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
unitssre | ⊢ (0[,]1) ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11261 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1re 11259 | . 2 ⊢ 1 ∈ ℝ | |
3 | iccssre 13466 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0[,]1) ⊆ ℝ) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (0[,]1) ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3963 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 [,]cicc 13387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-i2m1 11221 ax-1ne0 11222 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-icc 13391 |
This theorem is referenced by: unitsscn 13537 rpnnen 16260 iitopon 24919 dfii2 24922 dfii3 24923 dfii5 24925 iirevcn 24971 iihalf1cn 24973 iihalf1cnOLD 24974 iihalf2cn 24976 iihalf2cnOLD 24977 iimulcnOLD 24982 icchmeoOLD 24986 xrhmeo 24991 icccvx 24995 lebnumii 25012 reparphtiOLD 25044 pcoass 25071 pcorevlem 25073 pcorev2 25075 pi1xfrcnv 25104 vitalilem1 25657 vitalilem4 25660 vitalilem5 25661 vitali 25662 dvlipcn 26048 abelth2 26501 chordthmlem4 26893 chordthmlem5 26894 leibpi 27000 cvxcl 27043 scvxcvx 27044 lgamgulmlem2 27088 ttgcontlem1 28914 axeuclidlem 28992 stcl 32245 probun 34401 probvalrnd 34406 resconn 35231 cvmliftlem8 35277 poimirlem29 37636 poimirlem30 37637 poimirlem31 37638 poimir 37640 broucube 37641 k0004ss1 44141 k0004val0 44144 sqrlearg 45506 salgencntex 46299 eenglngeehlnmlem1 48587 |
Copyright terms: Public domain | W3C validator |