| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitssre | Structured version Visualization version GIF version | ||
| Description: (0[,]1) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| unitssre | ⊢ (0[,]1) ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11106 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 11104 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | iccssre 13321 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0[,]1) ⊆ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (0[,]1) ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2110 ⊆ wss 3900 (class class class)co 7341 ℝcr 10997 0cc0 10998 1c1 10999 [,]cicc 13240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-i2m1 11066 ax-1ne0 11067 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-icc 13244 |
| This theorem is referenced by: unitsscn 13392 rpnnen 16128 iitopon 24792 dfii2 24795 dfii3 24796 dfii5 24798 iirevcn 24844 iihalf1cn 24846 iihalf1cnOLD 24847 iihalf2cn 24849 iihalf2cnOLD 24850 iimulcnOLD 24855 icchmeoOLD 24859 xrhmeo 24864 icccvx 24868 lebnumii 24885 reparphtiOLD 24917 pcoass 24944 pcorevlem 24946 pcorev2 24948 pi1xfrcnv 24977 vitalilem1 25529 vitalilem4 25532 vitalilem5 25533 vitali 25534 dvlipcn 25919 abelth2 26372 chordthmlem4 26765 chordthmlem5 26766 leibpi 26872 cvxcl 26915 scvxcvx 26916 lgamgulmlem2 26960 ttgcontlem1 28856 axeuclidlem 28933 stcl 32186 probun 34422 probvalrnd 34427 resconn 35258 cvmliftlem8 35304 poimirlem29 37668 poimirlem30 37669 poimirlem31 37670 poimir 37672 broucube 37673 k0004ss1 44163 k0004val0 44166 sqrlearg 45572 salgencntex 46360 eenglngeehlnmlem1 48748 |
| Copyright terms: Public domain | W3C validator |