Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unitssre | Structured version Visualization version GIF version |
Description: (0[,]1) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
unitssre | ⊢ (0[,]1) ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10908 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1re 10906 | . 2 ⊢ 1 ∈ ℝ | |
3 | iccssre 13090 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0[,]1) ⊆ ℝ) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (0[,]1) ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3883 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 [,]cicc 13011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-i2m1 10870 ax-1ne0 10871 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-icc 13015 |
This theorem is referenced by: unitsscn 13161 rpnnen 15864 iitopon 23948 dfii2 23951 dfii3 23952 dfii5 23954 iirevcn 23999 iihalf1cn 24001 iihalf2cn 24003 iimulcn 24007 icchmeo 24010 xrhmeo 24015 icccvx 24019 lebnumii 24035 reparphti 24066 pcoass 24093 pcorevlem 24095 pcorev2 24097 pi1xfrcnv 24126 vitalilem1 24677 vitalilem4 24680 vitalilem5 24681 vitali 24682 dvlipcn 25063 abelth2 25506 chordthmlem4 25890 chordthmlem5 25891 leibpi 25997 cvxcl 26039 scvxcvx 26040 lgamgulmlem2 26084 ttgcontlem1 27155 axeuclidlem 27233 stcl 30479 probun 32286 probvalrnd 32291 cvxpconn 33104 cvxsconn 33105 resconn 33108 cvmliftlem8 33154 poimirlem29 35733 poimirlem30 35734 poimirlem31 35735 poimir 35737 broucube 35738 k0004ss1 41650 k0004val0 41653 sqrlearg 42981 salgencntex 43772 eenglngeehlnmlem1 45971 |
Copyright terms: Public domain | W3C validator |