| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitssre | Structured version Visualization version GIF version | ||
| Description: (0[,]1) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| unitssre | ⊢ (0[,]1) ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11242 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 11240 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | iccssre 13451 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0[,]1) ⊆ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (0[,]1) ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3931 (class class class)co 7410 ℝcr 11133 0cc0 11134 1c1 11135 [,]cicc 13370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-i2m1 11202 ax-1ne0 11203 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-icc 13374 |
| This theorem is referenced by: unitsscn 13522 rpnnen 16250 iitopon 24828 dfii2 24831 dfii3 24832 dfii5 24834 iirevcn 24880 iihalf1cn 24882 iihalf1cnOLD 24883 iihalf2cn 24885 iihalf2cnOLD 24886 iimulcnOLD 24891 icchmeoOLD 24895 xrhmeo 24900 icccvx 24904 lebnumii 24921 reparphtiOLD 24953 pcoass 24980 pcorevlem 24982 pcorev2 24984 pi1xfrcnv 25013 vitalilem1 25566 vitalilem4 25569 vitalilem5 25570 vitali 25571 dvlipcn 25956 abelth2 26409 chordthmlem4 26802 chordthmlem5 26803 leibpi 26909 cvxcl 26952 scvxcvx 26953 lgamgulmlem2 26997 ttgcontlem1 28869 axeuclidlem 28946 stcl 32202 probun 34456 probvalrnd 34461 resconn 35273 cvmliftlem8 35319 poimirlem29 37678 poimirlem30 37679 poimirlem31 37680 poimir 37682 broucube 37683 k0004ss1 44150 k0004val0 44153 sqrlearg 45562 salgencntex 46352 eenglngeehlnmlem1 48697 |
| Copyright terms: Public domain | W3C validator |