Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unitssre | Structured version Visualization version GIF version |
Description: (0[,]1) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
unitssre | ⊢ (0[,]1) ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10961 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1re 10959 | . 2 ⊢ 1 ∈ ℝ | |
3 | iccssre 13143 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0[,]1) ⊆ ℝ) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (0[,]1) ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 ⊆ wss 3891 (class class class)co 7268 ℝcr 10854 0cc0 10855 1c1 10856 [,]cicc 13064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-i2m1 10923 ax-1ne0 10924 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-icc 13068 |
This theorem is referenced by: unitsscn 13214 rpnnen 15917 iitopon 24023 dfii2 24026 dfii3 24027 dfii5 24029 iirevcn 24074 iihalf1cn 24076 iihalf2cn 24078 iimulcn 24082 icchmeo 24085 xrhmeo 24090 icccvx 24094 lebnumii 24110 reparphti 24141 pcoass 24168 pcorevlem 24170 pcorev2 24172 pi1xfrcnv 24201 vitalilem1 24753 vitalilem4 24756 vitalilem5 24757 vitali 24758 dvlipcn 25139 abelth2 25582 chordthmlem4 25966 chordthmlem5 25967 leibpi 26073 cvxcl 26115 scvxcvx 26116 lgamgulmlem2 26160 ttgcontlem1 27233 axeuclidlem 27311 stcl 30557 probun 32365 probvalrnd 32370 cvxpconn 33183 cvxsconn 33184 resconn 33187 cvmliftlem8 33233 poimirlem29 35785 poimirlem30 35786 poimirlem31 35787 poimir 35789 broucube 35790 k0004ss1 41714 k0004val0 41717 sqrlearg 43045 salgencntex 43836 eenglngeehlnmlem1 46035 |
Copyright terms: Public domain | W3C validator |