| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitssre | Structured version Visualization version GIF version | ||
| Description: (0[,]1) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| unitssre | ⊢ (0[,]1) ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11136 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 11134 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | iccssre 13350 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0[,]1) ⊆ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (0[,]1) ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3905 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 [,]cicc 13269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-i2m1 11096 ax-1ne0 11097 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-icc 13273 |
| This theorem is referenced by: unitsscn 13421 rpnnen 16154 iitopon 24788 dfii2 24791 dfii3 24792 dfii5 24794 iirevcn 24840 iihalf1cn 24842 iihalf1cnOLD 24843 iihalf2cn 24845 iihalf2cnOLD 24846 iimulcnOLD 24851 icchmeoOLD 24855 xrhmeo 24860 icccvx 24864 lebnumii 24881 reparphtiOLD 24913 pcoass 24940 pcorevlem 24942 pcorev2 24944 pi1xfrcnv 24973 vitalilem1 25525 vitalilem4 25528 vitalilem5 25529 vitali 25530 dvlipcn 25915 abelth2 26368 chordthmlem4 26761 chordthmlem5 26762 leibpi 26868 cvxcl 26911 scvxcvx 26912 lgamgulmlem2 26956 ttgcontlem1 28848 axeuclidlem 28925 stcl 32178 probun 34386 probvalrnd 34391 resconn 35218 cvmliftlem8 35264 poimirlem29 37628 poimirlem30 37629 poimirlem31 37630 poimir 37632 broucube 37633 k0004ss1 44124 k0004val0 44127 sqrlearg 45535 salgencntex 46325 eenglngeehlnmlem1 48710 |
| Copyright terms: Public domain | W3C validator |