![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitssre | Structured version Visualization version GIF version |
Description: (0[,]1) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
unitssre | ⊢ (0[,]1) ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11292 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1re 11290 | . 2 ⊢ 1 ∈ ℝ | |
3 | iccssre 13489 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0[,]1) ⊆ ℝ) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (0[,]1) ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3976 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 [,]cicc 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-icc 13414 |
This theorem is referenced by: unitsscn 13560 rpnnen 16275 iitopon 24924 dfii2 24927 dfii3 24928 dfii5 24930 iirevcn 24976 iihalf1cn 24978 iihalf1cnOLD 24979 iihalf2cn 24981 iihalf2cnOLD 24982 iimulcnOLD 24987 icchmeoOLD 24991 xrhmeo 24996 icccvx 25000 lebnumii 25017 reparphtiOLD 25049 pcoass 25076 pcorevlem 25078 pcorev2 25080 pi1xfrcnv 25109 vitalilem1 25662 vitalilem4 25665 vitalilem5 25666 vitali 25667 dvlipcn 26053 abelth2 26504 chordthmlem4 26896 chordthmlem5 26897 leibpi 27003 cvxcl 27046 scvxcvx 27047 lgamgulmlem2 27091 ttgcontlem1 28917 axeuclidlem 28995 stcl 32248 probun 34384 probvalrnd 34389 resconn 35214 cvmliftlem8 35260 poimirlem29 37609 poimirlem30 37610 poimirlem31 37611 poimir 37613 broucube 37614 k0004ss1 44113 k0004val0 44116 sqrlearg 45471 salgencntex 46264 eenglngeehlnmlem1 48471 |
Copyright terms: Public domain | W3C validator |