![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitssre | Structured version Visualization version GIF version |
Description: (0[,]1) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
unitssre | ⊢ (0[,]1) ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10380 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1re 10378 | . 2 ⊢ 1 ∈ ℝ | |
3 | iccssre 12572 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0[,]1) ⊆ ℝ) | |
4 | 1, 2, 3 | mp2an 682 | 1 ⊢ (0[,]1) ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ⊆ wss 3792 (class class class)co 6924 ℝcr 10273 0cc0 10274 1c1 10275 [,]cicc 12495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-i2m1 10342 ax-1ne0 10343 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-po 5276 df-so 5277 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-icc 12499 |
This theorem is referenced by: rpnnen 15369 iitopon 23101 dfii2 23104 dfii3 23105 dfii5 23107 iirevcn 23148 iihalf1cn 23150 iihalf2cn 23152 iimulcn 23156 icchmeo 23159 xrhmeo 23164 icccvx 23168 lebnumii 23184 reparphti 23215 pcoass 23242 pcorevlem 23244 pcorev2 23246 pi1xfrcnv 23275 vitalilem1 23823 vitalilem4 23826 vitalilem5 23827 vitali 23828 dvlipcn 24205 abelth2 24644 chordthmlem4 25024 chordthmlem5 25025 leibpi 25132 cvxcl 25174 scvxcvx 25175 lgamgulmlem2 25219 ttgcontlem1 26251 axeuclidlem 26328 stcl 29664 unitsscn 30548 probun 31088 probvalrnd 31093 cvxpconn 31831 cvxsconn 31832 resconn 31835 cvmliftlem8 31881 poimirlem29 34073 poimirlem30 34074 poimirlem31 34075 poimir 34077 broucube 34078 k0004ss1 39419 k0004val0 39422 sqrlearg 40702 salgencntex 41499 eenglngeehlnmlem1 43487 |
Copyright terms: Public domain | W3C validator |