| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitssre | Structured version Visualization version GIF version | ||
| Description: (0[,]1) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| unitssre | ⊢ (0[,]1) ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11183 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 11181 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | iccssre 13397 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0[,]1) ⊆ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (0[,]1) ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3917 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 [,]cicc 13316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-i2m1 11143 ax-1ne0 11144 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-icc 13320 |
| This theorem is referenced by: unitsscn 13468 rpnnen 16202 iitopon 24779 dfii2 24782 dfii3 24783 dfii5 24785 iirevcn 24831 iihalf1cn 24833 iihalf1cnOLD 24834 iihalf2cn 24836 iihalf2cnOLD 24837 iimulcnOLD 24842 icchmeoOLD 24846 xrhmeo 24851 icccvx 24855 lebnumii 24872 reparphtiOLD 24904 pcoass 24931 pcorevlem 24933 pcorev2 24935 pi1xfrcnv 24964 vitalilem1 25516 vitalilem4 25519 vitalilem5 25520 vitali 25521 dvlipcn 25906 abelth2 26359 chordthmlem4 26752 chordthmlem5 26753 leibpi 26859 cvxcl 26902 scvxcvx 26903 lgamgulmlem2 26947 ttgcontlem1 28819 axeuclidlem 28896 stcl 32152 probun 34417 probvalrnd 34422 resconn 35240 cvmliftlem8 35286 poimirlem29 37650 poimirlem30 37651 poimirlem31 37652 poimir 37654 broucube 37655 k0004ss1 44147 k0004val0 44150 sqrlearg 45558 salgencntex 46348 eenglngeehlnmlem1 48730 |
| Copyright terms: Public domain | W3C validator |