Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unitssre | Structured version Visualization version GIF version |
Description: (0[,]1) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
unitssre | ⊢ (0[,]1) ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10977 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1re 10975 | . 2 ⊢ 1 ∈ ℝ | |
3 | iccssre 13161 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0[,]1) ⊆ ℝ) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (0[,]1) ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3887 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 [,]cicc 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-i2m1 10939 ax-1ne0 10940 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-icc 13086 |
This theorem is referenced by: unitsscn 13232 rpnnen 15936 iitopon 24042 dfii2 24045 dfii3 24046 dfii5 24048 iirevcn 24093 iihalf1cn 24095 iihalf2cn 24097 iimulcn 24101 icchmeo 24104 xrhmeo 24109 icccvx 24113 lebnumii 24129 reparphti 24160 pcoass 24187 pcorevlem 24189 pcorev2 24191 pi1xfrcnv 24220 vitalilem1 24772 vitalilem4 24775 vitalilem5 24776 vitali 24777 dvlipcn 25158 abelth2 25601 chordthmlem4 25985 chordthmlem5 25986 leibpi 26092 cvxcl 26134 scvxcvx 26135 lgamgulmlem2 26179 ttgcontlem1 27252 axeuclidlem 27330 stcl 30578 probun 32386 probvalrnd 32391 cvxpconn 33204 cvxsconn 33205 resconn 33208 cvmliftlem8 33254 poimirlem29 35806 poimirlem30 35807 poimirlem31 35808 poimir 35810 broucube 35811 k0004ss1 41761 k0004val0 41764 sqrlearg 43091 salgencntex 43882 eenglngeehlnmlem1 46083 |
Copyright terms: Public domain | W3C validator |