Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1542
∈ wcel 2107 (class class class)co 7358
ℂcc 11050 0cc0 11052
− cmin 11386 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-ltxr 11195 df-sub 11388 |
This theorem is referenced by: mulsubaddmulsub
11620 leaddle0
11671 cru
12146 iccf1o
13414 fzocatel
13637 zmod10
13793 hashfzo
14330 hashfzp1
14332 ccatval21sw
14474 ccats1val2
14516 swrd00
14533 ccatpfx
14590 swrdccat3blem
14628 revccat
14655 repswswrd
14673 climconst
15426 rlimconst
15427 telfsumo
15688 fsumparts
15692 incexc
15723 pwdif
15754 cvgrat
15769 binomfallfaclem2
15924 fallfacfac
15929 bpolysum
15937 divalglem5
16280 nn0seqcvgd
16447 pcmpt2
16766 4sqlem15
16832 efgtlen
19509 srgbinomlem3
19960 cayhamlem1
22218 vitalilem1
24975 dvcnp2
25287 dvferm1lem
25351 c1lip1
25364 dv11cn
25368 ftc1lem5
25407 ftc2
25411 plyeq0lem
25574 dgrcolem2
25638 plydivlem4
25659 qaa
25686 aalioulem3
25697 aaliou3lem2
25706 tayl0
25724 dvntaylp
25733 taylthlem1
25735 taylthlem2
25736 abelthlem9
25802 isosctrlem1
26171 birthdaylem2
26305 rlimcnp
26318 lgam1
26416 basellem2
26434 basellem5
26437 chpub
26571 dchrsum2
26619 sumdchr2
26621 2sqmod
26787 rplogsumlem2
26836 dchrisumlem1
26840 pntlemf
26956 colinearalglem4
27861 crctcsh
28772 eucrct2eupth
29192 ipidsq
29655 dip0r
29662 riesz3i
31007 riesz4i
31008 hmopidmpji
31097 pjclem4
31144 pj3si
31152 cycpmco2lem2
31979 cycpmco2lem4
31981 cycpmco2lem6
31983 freshmansdream
32070 fermltlchr
32157 znfermltl
32158 ccfldextdgrr
32359 signsply0
33166 itgexpif
33222 dnizeq0
34941 unbdqndv2lem2
34976 poimir
36114 itg2addnclem3
36134 ftc1cnnc
36153 ftc2nc
36163 areacirc
36174 sticksstones10
40566 sticksstones12a
40568 metakunt24
40603 lsubcom23d
40796 fltnltalem
41003 3cubeslem2
41011 congid
41298 congabseq
41301 jm2.18
41315 dgrsub2
41465 areaquad
41553 ofsubid
42611 isosctrlem1ALT
43223 supxrgelem
43578 constlimc
43872 ioodvbdlimc1lem1
44179 dvnxpaek
44190 dvnmul
44191 voliooico
44240 voliccico
44247 stoweidlem13
44261 stoweidlem23
44271 stoweidlem26
44274 stirlinglem5
44326 dirkertrigeqlem2
44347 fourierdlem4
44359 fourierdlem42
44397 fourierdlem60
44414 fourierdlem61
44415 fourierdlem74
44428 fourierdlem75
44429 fourierdlem89
44443 fourierdlem90
44444 fourierdlem91
44445 fourierdlem103
44457 fourierdlem104
44458 fourierdlem107
44461 sqwvfoura
44476 etransclem24
44506 etransclem25
44507 hoidmv1lelem1
44839 hoidmv1lelem2
44840 hoidmvlelem1
44843 hoidmvlelem2
44844 volico2
44889 2elfz2melfz
45557 m1mod0mod1
45568 m1modmmod
46614 eenglngeehlnmlem2
46831 rrx2linest
46835 line2x
46847 itscnhlc0yqe
46852 itsclc0yqsollem1
46855 |