Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1542
∈ wcel 2107 (class class class)co 7409
ℂcc 11108 0cc0 11110
− cmin 11444 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 |
This theorem is referenced by: mulsubaddmulsub
11678 leaddle0
11729 cru
12204 iccf1o
13473 fzocatel
13696 zmod10
13852 hashfzo
14389 hashfzp1
14391 ccatval21sw
14535 ccats1val2
14577 swrd00
14594 ccatpfx
14651 swrdccat3blem
14689 revccat
14716 repswswrd
14734 climconst
15487 rlimconst
15488 telfsumo
15748 fsumparts
15752 incexc
15783 pwdif
15814 cvgrat
15829 binomfallfaclem2
15984 fallfacfac
15989 bpolysum
15997 divalglem5
16340 nn0seqcvgd
16507 pcmpt2
16826 4sqlem15
16892 efgtlen
19594 srgbinomlem3
20051 cayhamlem1
22368 vitalilem1
25125 dvcnp2
25437 dvferm1lem
25501 c1lip1
25514 dv11cn
25518 ftc1lem5
25557 ftc2
25561 plyeq0lem
25724 dgrcolem2
25788 plydivlem4
25809 qaa
25836 aalioulem3
25847 aaliou3lem2
25856 tayl0
25874 dvntaylp
25883 taylthlem1
25885 taylthlem2
25886 abelthlem9
25952 isosctrlem1
26323 birthdaylem2
26457 rlimcnp
26470 lgam1
26568 basellem2
26586 basellem5
26589 chpub
26723 dchrsum2
26771 sumdchr2
26773 2sqmod
26939 rplogsumlem2
26988 dchrisumlem1
26992 pntlemf
27108 colinearalglem4
28198 crctcsh
29109 eucrct2eupth
29529 ipidsq
29994 dip0r
30001 riesz3i
31346 riesz4i
31347 hmopidmpji
31436 pjclem4
31483 pj3si
31491 cycpmco2lem2
32317 cycpmco2lem4
32319 cycpmco2lem6
32321 freshmansdream
32412 fermltlchr
32509 znfermltl
32510 ccfldextdgrr
32777 signsply0
33593 itgexpif
33649 gg-dvcnp2
35205 dnizeq0
35399 unbdqndv2lem2
35434 poimir
36569 itg2addnclem3
36589 ftc1cnnc
36608 ftc2nc
36618 areacirc
36629 sticksstones10
41019 sticksstones12a
41021 metakunt24
41056 lsubcom23d
41239 fltnltalem
41452 3cubeslem2
41471 congid
41758 congabseq
41761 jm2.18
41775 dgrsub2
41925 areaquad
42013 ofsubid
43131 isosctrlem1ALT
43743 supxrgelem
44095 constlimc
44388 ioodvbdlimc1lem1
44695 dvnxpaek
44706 dvnmul
44707 voliooico
44756 voliccico
44763 stoweidlem13
44777 stoweidlem23
44787 stoweidlem26
44790 stirlinglem5
44842 dirkertrigeqlem2
44863 fourierdlem4
44875 fourierdlem42
44913 fourierdlem60
44930 fourierdlem61
44931 fourierdlem74
44944 fourierdlem75
44945 fourierdlem89
44959 fourierdlem90
44960 fourierdlem91
44961 fourierdlem103
44973 fourierdlem104
44974 fourierdlem107
44977 sqwvfoura
44992 etransclem24
45022 etransclem25
45023 hoidmv1lelem1
45355 hoidmv1lelem2
45356 hoidmvlelem1
45359 hoidmvlelem2
45360 volico2
45405 2elfz2melfz
46074 m1mod0mod1
46085 m1modmmod
47255 eenglngeehlnmlem2
47472 rrx2linest
47476 line2x
47488 itscnhlc0yqe
47493 itsclc0yqsollem1
47496 |