| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letopon | Structured version Visualization version GIF version | ||
| Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| letopon | ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | letsr 18517 | . 2 ⊢ ≤ ∈ TosetRel | |
| 2 | ledm 18514 | . . 3 ⊢ ℝ* = dom ≤ | |
| 3 | 2 | ordttopon 23096 | . 2 ⊢ ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ‘cfv 6486 ℝ*cxr 11167 ≤ cle 11169 ordTopcordt 17421 TosetRel ctsr 18489 TopOnctopon 22813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9320 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-topgen 17365 df-ordt 17423 df-ps 18490 df-tsr 18491 df-top 22797 df-topon 22814 df-bases 22849 |
| This theorem is referenced by: letop 23109 letopuni 23110 xrstopn 23111 xrstps 23112 xmetdcn 24743 metdcn2 24744 xrlimcnp 26894 xrge0pluscn 33906 xrge0mulc1cn 33907 lmlimxrge0 33914 pnfneige0 33917 lmxrge0 33918 esumcvg 34052 xlimres 45803 xlimcl 45804 xlimconst 45807 xlimbr 45809 xlimmnfvlem1 45814 xlimmnfvlem2 45815 xlimpnfvlem1 45818 xlimpnfvlem2 45819 |
| Copyright terms: Public domain | W3C validator |