MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letopon Structured version   Visualization version   GIF version

Theorem letopon 23139
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
letopon (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)

Proof of Theorem letopon
StepHypRef Expression
1 letsr 18584 . 2 ≤ ∈ TosetRel
2 ledm 18581 . . 3 * = dom ≤
32ordttopon 23127 . 2 ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
41, 3ax-mp 5 1 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  cfv 6547  *cxr 11277  cle 11279  ordTopcordt 17480   TosetRel ctsr 18556  TopOnctopon 22842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-pre-lttri 11212  ax-pre-lttrn 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-om 7870  df-1o 8485  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fi 9434  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-topgen 17424  df-ordt 17482  df-ps 18557  df-tsr 18558  df-top 22826  df-topon 22843  df-bases 22879
This theorem is referenced by:  letop  23140  letopuni  23141  xrstopn  23142  xrstps  23143  xmetdcn  24784  metdcn2  24785  xrlimcnp  26930  xrge0pluscn  33611  xrge0mulc1cn  33612  lmlimxrge0  33619  pnfneige0  33622  lmxrge0  33623  esumcvg  33775  xlimres  45272  xlimcl  45273  xlimconst  45276  xlimbr  45278  xlimmnfvlem1  45283  xlimmnfvlem2  45284  xlimpnfvlem1  45287  xlimpnfvlem2  45288
  Copyright terms: Public domain W3C validator