![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > letopon | Structured version Visualization version GIF version |
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
letopon | ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | letsr 18663 | . 2 ⊢ ≤ ∈ TosetRel | |
2 | ledm 18660 | . . 3 ⊢ ℝ* = dom ≤ | |
3 | 2 | ordttopon 23222 | . 2 ⊢ ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ‘cfv 6573 ℝ*cxr 11323 ≤ cle 11325 ordTopcordt 17559 TosetRel ctsr 18635 TopOnctopon 22937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-topgen 17503 df-ordt 17561 df-ps 18636 df-tsr 18637 df-top 22921 df-topon 22938 df-bases 22974 |
This theorem is referenced by: letop 23235 letopuni 23236 xrstopn 23237 xrstps 23238 xmetdcn 24879 metdcn2 24880 xrlimcnp 27029 xrge0pluscn 33886 xrge0mulc1cn 33887 lmlimxrge0 33894 pnfneige0 33897 lmxrge0 33898 esumcvg 34050 xlimres 45742 xlimcl 45743 xlimconst 45746 xlimbr 45748 xlimmnfvlem1 45753 xlimmnfvlem2 45754 xlimpnfvlem1 45757 xlimpnfvlem2 45758 |
Copyright terms: Public domain | W3C validator |