MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letopon Structured version   Visualization version   GIF version

Theorem letopon 23129
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
letopon (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)

Proof of Theorem letopon
StepHypRef Expression
1 letsr 18592 . 2 ≤ ∈ TosetRel
2 ledm 18589 . . 3 * = dom ≤
32ordttopon 23117 . 2 ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
41, 3ax-mp 5 1 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  cfv 6553  *cxr 11285  cle 11287  ordTopcordt 17488   TosetRel ctsr 18564  TopOnctopon 22832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-pre-lttri 11220  ax-pre-lttrn 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-om 7877  df-1o 8493  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fi 9442  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-topgen 17432  df-ordt 17490  df-ps 18565  df-tsr 18566  df-top 22816  df-topon 22833  df-bases 22869
This theorem is referenced by:  letop  23130  letopuni  23131  xrstopn  23132  xrstps  23133  xmetdcn  24774  metdcn2  24775  xrlimcnp  26920  xrge0pluscn  33574  xrge0mulc1cn  33575  lmlimxrge0  33582  pnfneige0  33585  lmxrge0  33586  esumcvg  33738  xlimres  45238  xlimcl  45239  xlimconst  45242  xlimbr  45244  xlimmnfvlem1  45249  xlimmnfvlem2  45250  xlimpnfvlem1  45253  xlimpnfvlem2  45254
  Copyright terms: Public domain W3C validator