Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > letopon | Structured version Visualization version GIF version |
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
letopon | ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | letsr 18226 | . 2 ⊢ ≤ ∈ TosetRel | |
2 | ledm 18223 | . . 3 ⊢ ℝ* = dom ≤ | |
3 | 2 | ordttopon 22252 | . 2 ⊢ ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ‘cfv 6418 ℝ*cxr 10939 ≤ cle 10941 ordTopcordt 17127 TosetRel ctsr 18198 TopOnctopon 21967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-topgen 17071 df-ordt 17129 df-ps 18199 df-tsr 18200 df-top 21951 df-topon 21968 df-bases 22004 |
This theorem is referenced by: letop 22265 letopuni 22266 xrstopn 22267 xrstps 22268 xmetdcn 23907 metdcn2 23908 xrlimcnp 26023 xrge0pluscn 31792 xrge0mulc1cn 31793 lmlimxrge0 31800 pnfneige0 31803 lmxrge0 31804 esumcvg 31954 xlimres 43252 xlimcl 43253 xlimconst 43256 xlimbr 43258 xlimmnfvlem1 43263 xlimmnfvlem2 43264 xlimpnfvlem1 43267 xlimpnfvlem2 43268 |
Copyright terms: Public domain | W3C validator |