MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letopon Structured version   Visualization version   GIF version

Theorem letopon 23118
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
letopon (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)

Proof of Theorem letopon
StepHypRef Expression
1 letsr 18496 . 2 ≤ ∈ TosetRel
2 ledm 18493 . . 3 * = dom ≤
32ordttopon 23106 . 2 ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
41, 3ax-mp 5 1 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  cfv 6481  *cxr 11142  cle 11144  ordTopcordt 17400   TosetRel ctsr 18468  TopOnctopon 22823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-pre-lttri 11077  ax-pre-lttrn 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-topgen 17344  df-ordt 17402  df-ps 18469  df-tsr 18470  df-top 22807  df-topon 22824  df-bases 22859
This theorem is referenced by:  letop  23119  letopuni  23120  xrstopn  23121  xrstps  23122  xmetdcn  24752  metdcn2  24753  xrlimcnp  26903  xrge0pluscn  33948  xrge0mulc1cn  33949  lmlimxrge0  33956  pnfneige0  33959  lmxrge0  33960  esumcvg  34094  xlimres  45858  xlimcl  45859  xlimconst  45862  xlimbr  45864  xlimmnfvlem1  45869  xlimmnfvlem2  45870  xlimpnfvlem1  45873  xlimpnfvlem2  45874
  Copyright terms: Public domain W3C validator