MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letopon Structured version   Visualization version   GIF version

Theorem letopon 21380
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
letopon (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)

Proof of Theorem letopon
StepHypRef Expression
1 letsr 17580 . 2 ≤ ∈ TosetRel
2 ledm 17577 . . 3 * = dom ≤
32ordttopon 21368 . 2 ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
41, 3ax-mp 5 1 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wcel 2166  cfv 6123  *cxr 10390  cle 10392  ordTopcordt 16512   TosetRel ctsr 17552  TopOnctopon 21085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-pre-lttri 10326  ax-pre-lttrn 10327
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fi 8586  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-topgen 16457  df-ordt 16514  df-ps 17553  df-tsr 17554  df-top 21069  df-topon 21086  df-bases 21121
This theorem is referenced by:  letop  21381  letopuni  21382  xrstopn  21383  xrstps  21384  xmetdcn  23011  metdcn2  23012  xrlimcnp  25108  xrge0pluscn  30531  xrge0mulc1cn  30532  lmlimxrge0  30539  pnfneige0  30542  lmxrge0  30543  esumcvg  30693  xlimres  40842  xlimcl  40843  xlimconst  40846  xlimbr  40848  xlimmnfvlem1  40853  xlimmnfvlem2  40854  xlimpnfvlem1  40857  xlimpnfvlem2  40858
  Copyright terms: Public domain W3C validator