| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letopon | Structured version Visualization version GIF version | ||
| Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| letopon | ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | letsr 18608 | . 2 ⊢ ≤ ∈ TosetRel | |
| 2 | ledm 18605 | . . 3 ⊢ ℝ* = dom ≤ | |
| 3 | 2 | ordttopon 23136 | . 2 ⊢ ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ‘cfv 6536 ℝ*cxr 11273 ≤ cle 11275 ordTopcordt 17518 TosetRel ctsr 18580 TopOnctopon 22853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1o 8485 df-2o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9428 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-topgen 17462 df-ordt 17520 df-ps 18581 df-tsr 18582 df-top 22837 df-topon 22854 df-bases 22889 |
| This theorem is referenced by: letop 23149 letopuni 23150 xrstopn 23151 xrstps 23152 xmetdcn 24783 metdcn2 24784 xrlimcnp 26935 xrge0pluscn 33976 xrge0mulc1cn 33977 lmlimxrge0 33984 pnfneige0 33987 lmxrge0 33988 esumcvg 34122 xlimres 45817 xlimcl 45818 xlimconst 45821 xlimbr 45823 xlimmnfvlem1 45828 xlimmnfvlem2 45829 xlimpnfvlem1 45832 xlimpnfvlem2 45833 |
| Copyright terms: Public domain | W3C validator |