![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > letopon | Structured version Visualization version GIF version |
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
letopon | ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | letsr 18651 | . 2 ⊢ ≤ ∈ TosetRel | |
2 | ledm 18648 | . . 3 ⊢ ℝ* = dom ≤ | |
3 | 2 | ordttopon 23217 | . 2 ⊢ ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ‘cfv 6563 ℝ*cxr 11292 ≤ cle 11294 ordTopcordt 17546 TosetRel ctsr 18623 TopOnctopon 22932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-om 7888 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-topgen 17490 df-ordt 17548 df-ps 18624 df-tsr 18625 df-top 22916 df-topon 22933 df-bases 22969 |
This theorem is referenced by: letop 23230 letopuni 23231 xrstopn 23232 xrstps 23233 xmetdcn 24874 metdcn2 24875 xrlimcnp 27026 xrge0pluscn 33901 xrge0mulc1cn 33902 lmlimxrge0 33909 pnfneige0 33912 lmxrge0 33913 esumcvg 34067 xlimres 45777 xlimcl 45778 xlimconst 45781 xlimbr 45783 xlimmnfvlem1 45788 xlimmnfvlem2 45789 xlimpnfvlem1 45792 xlimpnfvlem2 45793 |
Copyright terms: Public domain | W3C validator |