| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letopon | Structured version Visualization version GIF version | ||
| Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| letopon | ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | letsr 18496 | . 2 ⊢ ≤ ∈ TosetRel | |
| 2 | ledm 18493 | . . 3 ⊢ ℝ* = dom ≤ | |
| 3 | 2 | ordttopon 23106 | . 2 ⊢ ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ‘cfv 6481 ℝ*cxr 11142 ≤ cle 11144 ordTopcordt 17400 TosetRel ctsr 18468 TopOnctopon 22823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-topgen 17344 df-ordt 17402 df-ps 18469 df-tsr 18470 df-top 22807 df-topon 22824 df-bases 22859 |
| This theorem is referenced by: letop 23119 letopuni 23120 xrstopn 23121 xrstps 23122 xmetdcn 24752 metdcn2 24753 xrlimcnp 26903 xrge0pluscn 33948 xrge0mulc1cn 33949 lmlimxrge0 33956 pnfneige0 33959 lmxrge0 33960 esumcvg 34094 xlimres 45858 xlimcl 45859 xlimconst 45862 xlimbr 45864 xlimmnfvlem1 45869 xlimmnfvlem2 45870 xlimpnfvlem1 45873 xlimpnfvlem2 45874 |
| Copyright terms: Public domain | W3C validator |