| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letopon | Structured version Visualization version GIF version | ||
| Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| letopon | ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | letsr 18501 | . 2 ⊢ ≤ ∈ TosetRel | |
| 2 | ledm 18498 | . . 3 ⊢ ℝ* = dom ≤ | |
| 3 | 2 | ordttopon 23109 | . 2 ⊢ ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ‘cfv 6486 ℝ*cxr 11152 ≤ cle 11154 ordTopcordt 17405 TosetRel ctsr 18473 TopOnctopon 22826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7803 df-1o 8391 df-2o 8392 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9302 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-topgen 17349 df-ordt 17407 df-ps 18474 df-tsr 18475 df-top 22810 df-topon 22827 df-bases 22862 |
| This theorem is referenced by: letop 23122 letopuni 23123 xrstopn 23124 xrstps 23125 xmetdcn 24755 metdcn2 24756 xrlimcnp 26906 xrge0pluscn 33974 xrge0mulc1cn 33975 lmlimxrge0 33982 pnfneige0 33985 lmxrge0 33986 esumcvg 34120 xlimres 45943 xlimcl 45944 xlimconst 45947 xlimbr 45949 xlimmnfvlem1 45954 xlimmnfvlem2 45955 xlimpnfvlem1 45958 xlimpnfvlem2 45959 |
| Copyright terms: Public domain | W3C validator |