| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letopon | Structured version Visualization version GIF version | ||
| Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| letopon | ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | letsr 18552 | . 2 ⊢ ≤ ∈ TosetRel | |
| 2 | ledm 18549 | . . 3 ⊢ ℝ* = dom ≤ | |
| 3 | 2 | ordttopon 23080 | . 2 ⊢ ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ‘cfv 6511 ℝ*cxr 11207 ≤ cle 11209 ordTopcordt 17462 TosetRel ctsr 18524 TopOnctopon 22797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-topgen 17406 df-ordt 17464 df-ps 18525 df-tsr 18526 df-top 22781 df-topon 22798 df-bases 22833 |
| This theorem is referenced by: letop 23093 letopuni 23094 xrstopn 23095 xrstps 23096 xmetdcn 24727 metdcn2 24728 xrlimcnp 26878 xrge0pluscn 33930 xrge0mulc1cn 33931 lmlimxrge0 33938 pnfneige0 33941 lmxrge0 33942 esumcvg 34076 xlimres 45819 xlimcl 45820 xlimconst 45823 xlimbr 45825 xlimmnfvlem1 45830 xlimmnfvlem2 45831 xlimpnfvlem1 45834 xlimpnfvlem2 45835 |
| Copyright terms: Public domain | W3C validator |