![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtrestixx | Structured version Visualization version GIF version |
Description: The restriction of the less than order to an interval gives the same topology as the subspace topology. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
ordtrestixx.1 | β’ π΄ β β* |
ordtrestixx.2 | β’ ((π₯ β π΄ β§ π¦ β π΄) β (π₯[,]π¦) β π΄) |
Ref | Expression |
---|---|
ordtrestixx | β’ ((ordTopβ β€ ) βΎt π΄) = (ordTopβ( β€ β© (π΄ Γ π΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ledm 18567 | . . . 4 β’ β* = dom β€ | |
2 | letsr 18570 | . . . . 5 β’ β€ β TosetRel | |
3 | 2 | a1i 11 | . . . 4 β’ (β€ β β€ β TosetRel ) |
4 | ordtrestixx.1 | . . . . 5 β’ π΄ β β* | |
5 | 4 | a1i 11 | . . . 4 β’ (β€ β π΄ β β*) |
6 | 4 | sseli 3974 | . . . . . . 7 β’ (π₯ β π΄ β π₯ β β*) |
7 | 4 | sseli 3974 | . . . . . . 7 β’ (π¦ β π΄ β π¦ β β*) |
8 | iccval 13381 | . . . . . . 7 β’ ((π₯ β β* β§ π¦ β β*) β (π₯[,]π¦) = {π§ β β* β£ (π₯ β€ π§ β§ π§ β€ π¦)}) | |
9 | 6, 7, 8 | syl2an 595 | . . . . . 6 β’ ((π₯ β π΄ β§ π¦ β π΄) β (π₯[,]π¦) = {π§ β β* β£ (π₯ β€ π§ β§ π§ β€ π¦)}) |
10 | ordtrestixx.2 | . . . . . 6 β’ ((π₯ β π΄ β§ π¦ β π΄) β (π₯[,]π¦) β π΄) | |
11 | 9, 10 | eqsstrrd 4017 | . . . . 5 β’ ((π₯ β π΄ β§ π¦ β π΄) β {π§ β β* β£ (π₯ β€ π§ β§ π§ β€ π¦)} β π΄) |
12 | 11 | adantl 481 | . . . 4 β’ ((β€ β§ (π₯ β π΄ β§ π¦ β π΄)) β {π§ β β* β£ (π₯ β€ π§ β§ π§ β€ π¦)} β π΄) |
13 | 1, 3, 5, 12 | ordtrest2 23082 | . . 3 β’ (β€ β (ordTopβ( β€ β© (π΄ Γ π΄))) = ((ordTopβ β€ ) βΎt π΄)) |
14 | 13 | eqcomd 2733 | . 2 β’ (β€ β ((ordTopβ β€ ) βΎt π΄) = (ordTopβ( β€ β© (π΄ Γ π΄)))) |
15 | 14 | mptru 1541 | 1 β’ ((ordTopβ β€ ) βΎt π΄) = (ordTopβ( β€ β© (π΄ Γ π΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β€wtru 1535 β wcel 2099 {crab 3427 β© cin 3943 β wss 3944 class class class wbr 5142 Γ cxp 5670 βcfv 6542 (class class class)co 7414 β*cxr 11263 β€ cle 11265 [,]cicc 13345 βΎt crest 17387 ordTopcordt 17466 TosetRel ctsr 18542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-pre-lttri 11198 ax-pre-lttrn 11199 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-1o 8478 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fi 9420 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-icc 13349 df-rest 17389 df-topgen 17410 df-ordt 17468 df-ps 18543 df-tsr 18544 df-top 22770 df-topon 22787 df-bases 22823 |
This theorem is referenced by: ordtresticc 23101 icopnfhmeo 24842 |
Copyright terms: Public domain | W3C validator |