MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtrestixx Structured version   Visualization version   GIF version

Theorem ordtrestixx 22655
Description: The restriction of the less than order to an interval gives the same topology as the subspace topology. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
ordtrestixx.1 𝐴 ⊆ ℝ*
ordtrestixx.2 ((𝑥𝐴𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
Assertion
Ref Expression
ordtrestixx ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem ordtrestixx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ledm 18525 . . . 4 * = dom ≤
2 letsr 18528 . . . . 5 ≤ ∈ TosetRel
32a1i 11 . . . 4 (⊤ → ≤ ∈ TosetRel )
4 ordtrestixx.1 . . . . 5 𝐴 ⊆ ℝ*
54a1i 11 . . . 4 (⊤ → 𝐴 ⊆ ℝ*)
64sseli 3974 . . . . . . 7 (𝑥𝐴𝑥 ∈ ℝ*)
74sseli 3974 . . . . . . 7 (𝑦𝐴𝑦 ∈ ℝ*)
8 iccval 13345 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
96, 7, 8syl2an 596 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
10 ordtrestixx.2 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
119, 10eqsstrrd 4017 . . . . 5 ((𝑥𝐴𝑦𝐴) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ⊆ 𝐴)
1211adantl 482 . . . 4 ((⊤ ∧ (𝑥𝐴𝑦𝐴)) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ⊆ 𝐴)
131, 3, 5, 12ordtrest2 22637 . . 3 (⊤ → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘ ≤ ) ↾t 𝐴))
1413eqcomd 2737 . 2 (⊤ → ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))
1514mptru 1548 1 ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wtru 1542  wcel 2106  {crab 3431  cin 3943  wss 3944   class class class wbr 5141   × cxp 5667  cfv 6532  (class class class)co 7393  *cxr 11229  cle 11231  [,]cicc 13309  t crest 17348  ordTopcordt 17427   TosetRel ctsr 18500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-pre-lttri 11166  ax-pre-lttrn 11167
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-1o 8448  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fi 9388  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-icc 13313  df-rest 17350  df-topgen 17371  df-ordt 17429  df-ps 18501  df-tsr 18502  df-top 22325  df-topon 22342  df-bases 22378
This theorem is referenced by:  ordtresticc  22656  icopnfhmeo  24388
  Copyright terms: Public domain W3C validator