![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtrestixx | Structured version Visualization version GIF version |
Description: The restriction of the less than order to an interval gives the same topology as the subspace topology. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
ordtrestixx.1 | β’ π΄ β β* |
ordtrestixx.2 | β’ ((π₯ β π΄ β§ π¦ β π΄) β (π₯[,]π¦) β π΄) |
Ref | Expression |
---|---|
ordtrestixx | β’ ((ordTopβ β€ ) βΎt π΄) = (ordTopβ( β€ β© (π΄ Γ π΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ledm 18579 | . . . 4 β’ β* = dom β€ | |
2 | letsr 18582 | . . . . 5 β’ β€ β TosetRel | |
3 | 2 | a1i 11 | . . . 4 β’ (β€ β β€ β TosetRel ) |
4 | ordtrestixx.1 | . . . . 5 β’ π΄ β β* | |
5 | 4 | a1i 11 | . . . 4 β’ (β€ β π΄ β β*) |
6 | 4 | sseli 3968 | . . . . . . 7 β’ (π₯ β π΄ β π₯ β β*) |
7 | 4 | sseli 3968 | . . . . . . 7 β’ (π¦ β π΄ β π¦ β β*) |
8 | iccval 13393 | . . . . . . 7 β’ ((π₯ β β* β§ π¦ β β*) β (π₯[,]π¦) = {π§ β β* β£ (π₯ β€ π§ β§ π§ β€ π¦)}) | |
9 | 6, 7, 8 | syl2an 594 | . . . . . 6 β’ ((π₯ β π΄ β§ π¦ β π΄) β (π₯[,]π¦) = {π§ β β* β£ (π₯ β€ π§ β§ π§ β€ π¦)}) |
10 | ordtrestixx.2 | . . . . . 6 β’ ((π₯ β π΄ β§ π¦ β π΄) β (π₯[,]π¦) β π΄) | |
11 | 9, 10 | eqsstrrd 4012 | . . . . 5 β’ ((π₯ β π΄ β§ π¦ β π΄) β {π§ β β* β£ (π₯ β€ π§ β§ π§ β€ π¦)} β π΄) |
12 | 11 | adantl 480 | . . . 4 β’ ((β€ β§ (π₯ β π΄ β§ π¦ β π΄)) β {π§ β β* β£ (π₯ β€ π§ β§ π§ β€ π¦)} β π΄) |
13 | 1, 3, 5, 12 | ordtrest2 23124 | . . 3 β’ (β€ β (ordTopβ( β€ β© (π΄ Γ π΄))) = ((ordTopβ β€ ) βΎt π΄)) |
14 | 13 | eqcomd 2731 | . 2 β’ (β€ β ((ordTopβ β€ ) βΎt π΄) = (ordTopβ( β€ β© (π΄ Γ π΄)))) |
15 | 14 | mptru 1540 | 1 β’ ((ordTopβ β€ ) βΎt π΄) = (ordTopβ( β€ β© (π΄ Γ π΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β€wtru 1534 β wcel 2098 {crab 3419 β© cin 3939 β wss 3940 class class class wbr 5143 Γ cxp 5670 βcfv 6542 (class class class)co 7415 β*cxr 11275 β€ cle 11277 [,]cicc 13357 βΎt crest 17399 ordTopcordt 17478 TosetRel ctsr 18554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-pre-lttri 11210 ax-pre-lttrn 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-1o 8483 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fi 9432 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-icc 13361 df-rest 17401 df-topgen 17422 df-ordt 17480 df-ps 18555 df-tsr 18556 df-top 22812 df-topon 22829 df-bases 22865 |
This theorem is referenced by: ordtresticc 23143 icopnfhmeo 24884 |
Copyright terms: Public domain | W3C validator |