![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmobndi | Structured version Visualization version GIF version |
Description: Two ways to express that an operator is bounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoubi.1 | β’ π = (BaseSetβπ) |
nmoubi.y | β’ π = (BaseSetβπ) |
nmoubi.l | β’ πΏ = (normCVβπ) |
nmoubi.m | β’ π = (normCVβπ) |
nmoubi.3 | β’ π = (π normOpOLD π) |
nmoubi.u | β’ π β NrmCVec |
nmoubi.w | β’ π β NrmCVec |
Ref | Expression |
---|---|
nmobndi | β’ (π:πβΆπ β ((πβπ) β β β βπ β β βπ¦ β π ((πΏβπ¦) β€ 1 β (πβ(πβπ¦)) β€ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leid 11315 | . . . 4 β’ ((πβπ) β β β (πβπ) β€ (πβπ)) | |
2 | breq2 5152 | . . . . 5 β’ (π = (πβπ) β ((πβπ) β€ π β (πβπ) β€ (πβπ))) | |
3 | 2 | rspcev 3612 | . . . 4 β’ (((πβπ) β β β§ (πβπ) β€ (πβπ)) β βπ β β (πβπ) β€ π) |
4 | 1, 3 | mpdan 684 | . . 3 β’ ((πβπ) β β β βπ β β (πβπ) β€ π) |
5 | nmoubi.u | . . . . . . 7 β’ π β NrmCVec | |
6 | nmoubi.w | . . . . . . 7 β’ π β NrmCVec | |
7 | nmoubi.1 | . . . . . . . 8 β’ π = (BaseSetβπ) | |
8 | nmoubi.y | . . . . . . . 8 β’ π = (BaseSetβπ) | |
9 | nmoubi.3 | . . . . . . . 8 β’ π = (π normOpOLD π) | |
10 | 7, 8, 9 | nmoxr 30287 | . . . . . . 7 β’ ((π β NrmCVec β§ π β NrmCVec β§ π:πβΆπ) β (πβπ) β β*) |
11 | 5, 6, 10 | mp3an12 1450 | . . . . . 6 β’ (π:πβΆπ β (πβπ) β β*) |
12 | 11 | adantr 480 | . . . . 5 β’ ((π:πβΆπ β§ (π β β β§ (πβπ) β€ π)) β (πβπ) β β*) |
13 | simprl 768 | . . . . 5 β’ ((π:πβΆπ β§ (π β β β§ (πβπ) β€ π)) β π β β) | |
14 | 7, 8, 9 | nmogtmnf 30291 | . . . . . . 7 β’ ((π β NrmCVec β§ π β NrmCVec β§ π:πβΆπ) β -β < (πβπ)) |
15 | 5, 6, 14 | mp3an12 1450 | . . . . . 6 β’ (π:πβΆπ β -β < (πβπ)) |
16 | 15 | adantr 480 | . . . . 5 β’ ((π:πβΆπ β§ (π β β β§ (πβπ) β€ π)) β -β < (πβπ)) |
17 | simprr 770 | . . . . 5 β’ ((π:πβΆπ β§ (π β β β§ (πβπ) β€ π)) β (πβπ) β€ π) | |
18 | xrre 13153 | . . . . 5 β’ ((((πβπ) β β* β§ π β β) β§ (-β < (πβπ) β§ (πβπ) β€ π)) β (πβπ) β β) | |
19 | 12, 13, 16, 17, 18 | syl22anc 836 | . . . 4 β’ ((π:πβΆπ β§ (π β β β§ (πβπ) β€ π)) β (πβπ) β β) |
20 | 19 | rexlimdvaa 3155 | . . 3 β’ (π:πβΆπ β (βπ β β (πβπ) β€ π β (πβπ) β β)) |
21 | 4, 20 | impbid2 225 | . 2 β’ (π:πβΆπ β ((πβπ) β β β βπ β β (πβπ) β€ π)) |
22 | rexr 11265 | . . . 4 β’ (π β β β π β β*) | |
23 | nmoubi.l | . . . . 5 β’ πΏ = (normCVβπ) | |
24 | nmoubi.m | . . . . 5 β’ π = (normCVβπ) | |
25 | 7, 8, 23, 24, 9, 5, 6 | nmoubi 30293 | . . . 4 β’ ((π:πβΆπ β§ π β β*) β ((πβπ) β€ π β βπ¦ β π ((πΏβπ¦) β€ 1 β (πβ(πβπ¦)) β€ π))) |
26 | 22, 25 | sylan2 592 | . . 3 β’ ((π:πβΆπ β§ π β β) β ((πβπ) β€ π β βπ¦ β π ((πΏβπ¦) β€ 1 β (πβ(πβπ¦)) β€ π))) |
27 | 26 | rexbidva 3175 | . 2 β’ (π:πβΆπ β (βπ β β (πβπ) β€ π β βπ β β βπ¦ β π ((πΏβπ¦) β€ 1 β (πβ(πβπ¦)) β€ π))) |
28 | 21, 27 | bitrd 279 | 1 β’ (π:πβΆπ β ((πβπ) β β β βπ β β βπ¦ β π ((πΏβπ¦) β€ 1 β (πβ(πβπ¦)) β€ π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 βwrex 3069 class class class wbr 5148 βΆwf 6539 βcfv 6543 (class class class)co 7412 βcr 11112 1c1 11114 -βcmnf 11251 β*cxr 11252 < clt 11253 β€ cle 11254 NrmCVeccnv 30105 BaseSetcba 30107 normCVcnmcv 30111 normOpOLD cnmoo 30262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-sup 9440 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-grpo 30014 df-gid 30015 df-ginv 30016 df-ablo 30066 df-vc 30080 df-nv 30113 df-va 30116 df-ba 30117 df-sm 30118 df-0v 30119 df-nmcv 30121 df-nmoo 30266 |
This theorem is referenced by: nmounbi 30297 nmobndseqi 30300 nmobndseqiALT 30301 htthlem 30438 |
Copyright terms: Public domain | W3C validator |