MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmobndi Structured version   Visualization version   GIF version

Theorem nmobndi 30754
Description: Two ways to express that an operator is bounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmobndi (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
Distinct variable groups:   𝑦,𝑟,𝐿   𝑦,𝑈   𝑦,𝑊   𝑌,𝑟,𝑦   𝑀,𝑟,𝑦   𝑇,𝑟,𝑦   𝑋,𝑟,𝑦   𝑁,𝑟,𝑦
Allowed substitution hints:   𝑈(𝑟)   𝑊(𝑟)

Proof of Theorem nmobndi
StepHypRef Expression
1 leid 11246 . . . 4 ((𝑁𝑇) ∈ ℝ → (𝑁𝑇) ≤ (𝑁𝑇))
2 breq2 5106 . . . . 5 (𝑟 = (𝑁𝑇) → ((𝑁𝑇) ≤ 𝑟 ↔ (𝑁𝑇) ≤ (𝑁𝑇)))
32rspcev 3585 . . . 4 (((𝑁𝑇) ∈ ℝ ∧ (𝑁𝑇) ≤ (𝑁𝑇)) → ∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟)
41, 3mpdan 687 . . 3 ((𝑁𝑇) ∈ ℝ → ∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟)
5 nmoubi.u . . . . . . 7 𝑈 ∈ NrmCVec
6 nmoubi.w . . . . . . 7 𝑊 ∈ NrmCVec
7 nmoubi.1 . . . . . . . 8 𝑋 = (BaseSet‘𝑈)
8 nmoubi.y . . . . . . . 8 𝑌 = (BaseSet‘𝑊)
9 nmoubi.3 . . . . . . . 8 𝑁 = (𝑈 normOpOLD 𝑊)
107, 8, 9nmoxr 30745 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) ∈ ℝ*)
115, 6, 10mp3an12 1453 . . . . . 6 (𝑇:𝑋𝑌 → (𝑁𝑇) ∈ ℝ*)
1211adantr 480 . . . . 5 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → (𝑁𝑇) ∈ ℝ*)
13 simprl 770 . . . . 5 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → 𝑟 ∈ ℝ)
147, 8, 9nmogtmnf 30749 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → -∞ < (𝑁𝑇))
155, 6, 14mp3an12 1453 . . . . . 6 (𝑇:𝑋𝑌 → -∞ < (𝑁𝑇))
1615adantr 480 . . . . 5 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → -∞ < (𝑁𝑇))
17 simprr 772 . . . . 5 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → (𝑁𝑇) ≤ 𝑟)
18 xrre 13105 . . . . 5 ((((𝑁𝑇) ∈ ℝ*𝑟 ∈ ℝ) ∧ (-∞ < (𝑁𝑇) ∧ (𝑁𝑇) ≤ 𝑟)) → (𝑁𝑇) ∈ ℝ)
1912, 13, 16, 17, 18syl22anc 838 . . . 4 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → (𝑁𝑇) ∈ ℝ)
2019rexlimdvaa 3135 . . 3 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟 → (𝑁𝑇) ∈ ℝ))
214, 20impbid2 226 . 2 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟))
22 rexr 11196 . . . 4 (𝑟 ∈ ℝ → 𝑟 ∈ ℝ*)
23 nmoubi.l . . . . 5 𝐿 = (normCV𝑈)
24 nmoubi.m . . . . 5 𝑀 = (normCV𝑊)
257, 8, 23, 24, 9, 5, 6nmoubi 30751 . . . 4 ((𝑇:𝑋𝑌𝑟 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝑟 ↔ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
2622, 25sylan2 593 . . 3 ((𝑇:𝑋𝑌𝑟 ∈ ℝ) → ((𝑁𝑇) ≤ 𝑟 ↔ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
2726rexbidva 3155 . 2 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟 ↔ ∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
2821, 27bitrd 279 1 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  cr 11043  1c1 11045  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185  NrmCVeccnv 30563  BaseSetcba 30565  normCVcnmcv 30569   normOpOLD cnmoo 30720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-grpo 30472  df-gid 30473  df-ginv 30474  df-ablo 30524  df-vc 30538  df-nv 30571  df-va 30574  df-ba 30575  df-sm 30576  df-0v 30577  df-nmcv 30579  df-nmoo 30724
This theorem is referenced by:  nmounbi  30755  nmobndseqi  30758  nmobndseqiALT  30759  htthlem  30896
  Copyright terms: Public domain W3C validator