MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmobndi Structured version   Visualization version   GIF version

Theorem nmobndi 28155
Description: Two ways to express that an operator is bounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmobndi (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
Distinct variable groups:   𝑦,𝑟,𝐿   𝑦,𝑈   𝑦,𝑊   𝑌,𝑟,𝑦   𝑀,𝑟,𝑦   𝑇,𝑟,𝑦   𝑋,𝑟,𝑦   𝑁,𝑟,𝑦
Allowed substitution hints:   𝑈(𝑟)   𝑊(𝑟)

Proof of Theorem nmobndi
StepHypRef Expression
1 leid 10423 . . . 4 ((𝑁𝑇) ∈ ℝ → (𝑁𝑇) ≤ (𝑁𝑇))
2 breq2 4847 . . . . 5 (𝑟 = (𝑁𝑇) → ((𝑁𝑇) ≤ 𝑟 ↔ (𝑁𝑇) ≤ (𝑁𝑇)))
32rspcev 3497 . . . 4 (((𝑁𝑇) ∈ ℝ ∧ (𝑁𝑇) ≤ (𝑁𝑇)) → ∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟)
41, 3mpdan 679 . . 3 ((𝑁𝑇) ∈ ℝ → ∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟)
5 nmoubi.u . . . . . . 7 𝑈 ∈ NrmCVec
6 nmoubi.w . . . . . . 7 𝑊 ∈ NrmCVec
7 nmoubi.1 . . . . . . . 8 𝑋 = (BaseSet‘𝑈)
8 nmoubi.y . . . . . . . 8 𝑌 = (BaseSet‘𝑊)
9 nmoubi.3 . . . . . . . 8 𝑁 = (𝑈 normOpOLD 𝑊)
107, 8, 9nmoxr 28146 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) ∈ ℝ*)
115, 6, 10mp3an12 1576 . . . . . 6 (𝑇:𝑋𝑌 → (𝑁𝑇) ∈ ℝ*)
1211adantr 473 . . . . 5 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → (𝑁𝑇) ∈ ℝ*)
13 simprl 788 . . . . 5 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → 𝑟 ∈ ℝ)
147, 8, 9nmogtmnf 28150 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → -∞ < (𝑁𝑇))
155, 6, 14mp3an12 1576 . . . . . 6 (𝑇:𝑋𝑌 → -∞ < (𝑁𝑇))
1615adantr 473 . . . . 5 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → -∞ < (𝑁𝑇))
17 simprr 790 . . . . 5 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → (𝑁𝑇) ≤ 𝑟)
18 xrre 12249 . . . . 5 ((((𝑁𝑇) ∈ ℝ*𝑟 ∈ ℝ) ∧ (-∞ < (𝑁𝑇) ∧ (𝑁𝑇) ≤ 𝑟)) → (𝑁𝑇) ∈ ℝ)
1912, 13, 16, 17, 18syl22anc 868 . . . 4 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → (𝑁𝑇) ∈ ℝ)
2019rexlimdvaa 3213 . . 3 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟 → (𝑁𝑇) ∈ ℝ))
214, 20impbid2 218 . 2 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟))
22 rexr 10374 . . . 4 (𝑟 ∈ ℝ → 𝑟 ∈ ℝ*)
23 nmoubi.l . . . . 5 𝐿 = (normCV𝑈)
24 nmoubi.m . . . . 5 𝑀 = (normCV𝑊)
257, 8, 23, 24, 9, 5, 6nmoubi 28152 . . . 4 ((𝑇:𝑋𝑌𝑟 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝑟 ↔ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
2622, 25sylan2 587 . . 3 ((𝑇:𝑋𝑌𝑟 ∈ ℝ) → ((𝑁𝑇) ≤ 𝑟 ↔ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
2726rexbidva 3230 . 2 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟 ↔ ∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
2821, 27bitrd 271 1 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3089  wrex 3090   class class class wbr 4843  wf 6097  cfv 6101  (class class class)co 6878  cr 10223  1c1 10225  -∞cmnf 10361  *cxr 10362   < clt 10363  cle 10364  NrmCVeccnv 27964  BaseSetcba 27966  normCVcnmcv 27970   normOpOLD cnmoo 28121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-n0 11581  df-z 11667  df-uz 11931  df-rp 12075  df-seq 13056  df-exp 13115  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-grpo 27873  df-gid 27874  df-ginv 27875  df-ablo 27925  df-vc 27939  df-nv 27972  df-va 27975  df-ba 27976  df-sm 27977  df-0v 27978  df-nmcv 27980  df-nmoo 28125
This theorem is referenced by:  nmounbi  28156  nmobndseqi  28159  nmobndseqiALT  28160  htthlem  28299
  Copyright terms: Public domain W3C validator