| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmobndi | Structured version Visualization version GIF version | ||
| Description: Two ways to express that an operator is bounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmoubi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nmoubi.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| nmoubi.l | ⊢ 𝐿 = (normCV‘𝑈) |
| nmoubi.m | ⊢ 𝑀 = (normCV‘𝑊) |
| nmoubi.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| nmoubi.u | ⊢ 𝑈 ∈ NrmCVec |
| nmoubi.w | ⊢ 𝑊 ∈ NrmCVec |
| Ref | Expression |
|---|---|
| nmobndi | ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leid 11209 | . . . 4 ⊢ ((𝑁‘𝑇) ∈ ℝ → (𝑁‘𝑇) ≤ (𝑁‘𝑇)) | |
| 2 | breq2 5093 | . . . . 5 ⊢ (𝑟 = (𝑁‘𝑇) → ((𝑁‘𝑇) ≤ 𝑟 ↔ (𝑁‘𝑇) ≤ (𝑁‘𝑇))) | |
| 3 | 2 | rspcev 3572 | . . . 4 ⊢ (((𝑁‘𝑇) ∈ ℝ ∧ (𝑁‘𝑇) ≤ (𝑁‘𝑇)) → ∃𝑟 ∈ ℝ (𝑁‘𝑇) ≤ 𝑟) |
| 4 | 1, 3 | mpdan 687 | . . 3 ⊢ ((𝑁‘𝑇) ∈ ℝ → ∃𝑟 ∈ ℝ (𝑁‘𝑇) ≤ 𝑟) |
| 5 | nmoubi.u | . . . . . . 7 ⊢ 𝑈 ∈ NrmCVec | |
| 6 | nmoubi.w | . . . . . . 7 ⊢ 𝑊 ∈ NrmCVec | |
| 7 | nmoubi.1 | . . . . . . . 8 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 8 | nmoubi.y | . . . . . . . 8 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 9 | nmoubi.3 | . . . . . . . 8 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 10 | 7, 8, 9 | nmoxr 30746 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) ∈ ℝ*) |
| 11 | 5, 6, 10 | mp3an12 1453 | . . . . . 6 ⊢ (𝑇:𝑋⟶𝑌 → (𝑁‘𝑇) ∈ ℝ*) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁‘𝑇) ≤ 𝑟)) → (𝑁‘𝑇) ∈ ℝ*) |
| 13 | simprl 770 | . . . . 5 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁‘𝑇) ≤ 𝑟)) → 𝑟 ∈ ℝ) | |
| 14 | 7, 8, 9 | nmogtmnf 30750 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → -∞ < (𝑁‘𝑇)) |
| 15 | 5, 6, 14 | mp3an12 1453 | . . . . . 6 ⊢ (𝑇:𝑋⟶𝑌 → -∞ < (𝑁‘𝑇)) |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁‘𝑇) ≤ 𝑟)) → -∞ < (𝑁‘𝑇)) |
| 17 | simprr 772 | . . . . 5 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁‘𝑇) ≤ 𝑟)) → (𝑁‘𝑇) ≤ 𝑟) | |
| 18 | xrre 13068 | . . . . 5 ⊢ ((((𝑁‘𝑇) ∈ ℝ* ∧ 𝑟 ∈ ℝ) ∧ (-∞ < (𝑁‘𝑇) ∧ (𝑁‘𝑇) ≤ 𝑟)) → (𝑁‘𝑇) ∈ ℝ) | |
| 19 | 12, 13, 16, 17, 18 | syl22anc 838 | . . . 4 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁‘𝑇) ≤ 𝑟)) → (𝑁‘𝑇) ∈ ℝ) |
| 20 | 19 | rexlimdvaa 3134 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → (∃𝑟 ∈ ℝ (𝑁‘𝑇) ≤ 𝑟 → (𝑁‘𝑇) ∈ ℝ)) |
| 21 | 4, 20 | impbid2 226 | . 2 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ (𝑁‘𝑇) ≤ 𝑟)) |
| 22 | rexr 11158 | . . . 4 ⊢ (𝑟 ∈ ℝ → 𝑟 ∈ ℝ*) | |
| 23 | nmoubi.l | . . . . 5 ⊢ 𝐿 = (normCV‘𝑈) | |
| 24 | nmoubi.m | . . . . 5 ⊢ 𝑀 = (normCV‘𝑊) | |
| 25 | 7, 8, 23, 24, 9, 5, 6 | nmoubi 30752 | . . . 4 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ*) → ((𝑁‘𝑇) ≤ 𝑟 ↔ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
| 26 | 22, 25 | sylan2 593 | . . 3 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) → ((𝑁‘𝑇) ≤ 𝑟 ↔ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
| 27 | 26 | rexbidva 3154 | . 2 ⊢ (𝑇:𝑋⟶𝑌 → (∃𝑟 ∈ ℝ (𝑁‘𝑇) ≤ 𝑟 ↔ ∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
| 28 | 21, 27 | bitrd 279 | 1 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 class class class wbr 5089 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 1c1 11007 -∞cmnf 11144 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 NrmCVeccnv 30564 BaseSetcba 30566 normCVcnmcv 30570 normOpOLD cnmoo 30721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-grpo 30473 df-gid 30474 df-ginv 30475 df-ablo 30525 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-nmcv 30580 df-nmoo 30725 |
| This theorem is referenced by: nmounbi 30756 nmobndseqi 30759 nmobndseqiALT 30760 htthlem 30897 |
| Copyright terms: Public domain | W3C validator |