Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmobndi | Structured version Visualization version GIF version |
Description: Two ways to express that an operator is bounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoubi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmoubi.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmoubi.l | ⊢ 𝐿 = (normCV‘𝑈) |
nmoubi.m | ⊢ 𝑀 = (normCV‘𝑊) |
nmoubi.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
nmoubi.u | ⊢ 𝑈 ∈ NrmCVec |
nmoubi.w | ⊢ 𝑊 ∈ NrmCVec |
Ref | Expression |
---|---|
nmobndi | ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leid 10779 | . . . 4 ⊢ ((𝑁‘𝑇) ∈ ℝ → (𝑁‘𝑇) ≤ (𝑁‘𝑇)) | |
2 | breq2 5039 | . . . . 5 ⊢ (𝑟 = (𝑁‘𝑇) → ((𝑁‘𝑇) ≤ 𝑟 ↔ (𝑁‘𝑇) ≤ (𝑁‘𝑇))) | |
3 | 2 | rspcev 3543 | . . . 4 ⊢ (((𝑁‘𝑇) ∈ ℝ ∧ (𝑁‘𝑇) ≤ (𝑁‘𝑇)) → ∃𝑟 ∈ ℝ (𝑁‘𝑇) ≤ 𝑟) |
4 | 1, 3 | mpdan 686 | . . 3 ⊢ ((𝑁‘𝑇) ∈ ℝ → ∃𝑟 ∈ ℝ (𝑁‘𝑇) ≤ 𝑟) |
5 | nmoubi.u | . . . . . . 7 ⊢ 𝑈 ∈ NrmCVec | |
6 | nmoubi.w | . . . . . . 7 ⊢ 𝑊 ∈ NrmCVec | |
7 | nmoubi.1 | . . . . . . . 8 ⊢ 𝑋 = (BaseSet‘𝑈) | |
8 | nmoubi.y | . . . . . . . 8 ⊢ 𝑌 = (BaseSet‘𝑊) | |
9 | nmoubi.3 | . . . . . . . 8 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
10 | 7, 8, 9 | nmoxr 28653 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) ∈ ℝ*) |
11 | 5, 6, 10 | mp3an12 1448 | . . . . . 6 ⊢ (𝑇:𝑋⟶𝑌 → (𝑁‘𝑇) ∈ ℝ*) |
12 | 11 | adantr 484 | . . . . 5 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁‘𝑇) ≤ 𝑟)) → (𝑁‘𝑇) ∈ ℝ*) |
13 | simprl 770 | . . . . 5 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁‘𝑇) ≤ 𝑟)) → 𝑟 ∈ ℝ) | |
14 | 7, 8, 9 | nmogtmnf 28657 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → -∞ < (𝑁‘𝑇)) |
15 | 5, 6, 14 | mp3an12 1448 | . . . . . 6 ⊢ (𝑇:𝑋⟶𝑌 → -∞ < (𝑁‘𝑇)) |
16 | 15 | adantr 484 | . . . . 5 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁‘𝑇) ≤ 𝑟)) → -∞ < (𝑁‘𝑇)) |
17 | simprr 772 | . . . . 5 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁‘𝑇) ≤ 𝑟)) → (𝑁‘𝑇) ≤ 𝑟) | |
18 | xrre 12608 | . . . . 5 ⊢ ((((𝑁‘𝑇) ∈ ℝ* ∧ 𝑟 ∈ ℝ) ∧ (-∞ < (𝑁‘𝑇) ∧ (𝑁‘𝑇) ≤ 𝑟)) → (𝑁‘𝑇) ∈ ℝ) | |
19 | 12, 13, 16, 17, 18 | syl22anc 837 | . . . 4 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁‘𝑇) ≤ 𝑟)) → (𝑁‘𝑇) ∈ ℝ) |
20 | 19 | rexlimdvaa 3209 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → (∃𝑟 ∈ ℝ (𝑁‘𝑇) ≤ 𝑟 → (𝑁‘𝑇) ∈ ℝ)) |
21 | 4, 20 | impbid2 229 | . 2 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ (𝑁‘𝑇) ≤ 𝑟)) |
22 | rexr 10730 | . . . 4 ⊢ (𝑟 ∈ ℝ → 𝑟 ∈ ℝ*) | |
23 | nmoubi.l | . . . . 5 ⊢ 𝐿 = (normCV‘𝑈) | |
24 | nmoubi.m | . . . . 5 ⊢ 𝑀 = (normCV‘𝑊) | |
25 | 7, 8, 23, 24, 9, 5, 6 | nmoubi 28659 | . . . 4 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ*) → ((𝑁‘𝑇) ≤ 𝑟 ↔ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
26 | 22, 25 | sylan2 595 | . . 3 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) → ((𝑁‘𝑇) ≤ 𝑟 ↔ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
27 | 26 | rexbidva 3220 | . 2 ⊢ (𝑇:𝑋⟶𝑌 → (∃𝑟 ∈ ℝ (𝑁‘𝑇) ≤ 𝑟 ↔ ∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
28 | 21, 27 | bitrd 282 | 1 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 class class class wbr 5035 ⟶wf 6335 ‘cfv 6339 (class class class)co 7155 ℝcr 10579 1c1 10581 -∞cmnf 10716 ℝ*cxr 10717 < clt 10718 ≤ cle 10719 NrmCVeccnv 28471 BaseSetcba 28473 normCVcnmcv 28477 normOpOLD cnmoo 28628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-map 8423 df-en 8533 df-dom 8534 df-sdom 8535 df-sup 8944 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-n0 11940 df-z 12026 df-uz 12288 df-rp 12436 df-seq 13424 df-exp 13485 df-cj 14511 df-re 14512 df-im 14513 df-sqrt 14647 df-abs 14648 df-grpo 28380 df-gid 28381 df-ginv 28382 df-ablo 28432 df-vc 28446 df-nv 28479 df-va 28482 df-ba 28483 df-sm 28484 df-0v 28485 df-nmcv 28487 df-nmoo 28632 |
This theorem is referenced by: nmounbi 28663 nmobndseqi 28666 nmobndseqiALT 28667 htthlem 28804 |
Copyright terms: Public domain | W3C validator |