MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmobndi Structured version   Visualization version   GIF version

Theorem nmobndi 30794
Description: Two ways to express that an operator is bounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmobndi (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
Distinct variable groups:   𝑦,𝑟,𝐿   𝑦,𝑈   𝑦,𝑊   𝑌,𝑟,𝑦   𝑀,𝑟,𝑦   𝑇,𝑟,𝑦   𝑋,𝑟,𝑦   𝑁,𝑟,𝑦
Allowed substitution hints:   𝑈(𝑟)   𝑊(𝑟)

Proof of Theorem nmobndi
StepHypRef Expression
1 leid 11357 . . . 4 ((𝑁𝑇) ∈ ℝ → (𝑁𝑇) ≤ (𝑁𝑇))
2 breq2 5147 . . . . 5 (𝑟 = (𝑁𝑇) → ((𝑁𝑇) ≤ 𝑟 ↔ (𝑁𝑇) ≤ (𝑁𝑇)))
32rspcev 3622 . . . 4 (((𝑁𝑇) ∈ ℝ ∧ (𝑁𝑇) ≤ (𝑁𝑇)) → ∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟)
41, 3mpdan 687 . . 3 ((𝑁𝑇) ∈ ℝ → ∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟)
5 nmoubi.u . . . . . . 7 𝑈 ∈ NrmCVec
6 nmoubi.w . . . . . . 7 𝑊 ∈ NrmCVec
7 nmoubi.1 . . . . . . . 8 𝑋 = (BaseSet‘𝑈)
8 nmoubi.y . . . . . . . 8 𝑌 = (BaseSet‘𝑊)
9 nmoubi.3 . . . . . . . 8 𝑁 = (𝑈 normOpOLD 𝑊)
107, 8, 9nmoxr 30785 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) ∈ ℝ*)
115, 6, 10mp3an12 1453 . . . . . 6 (𝑇:𝑋𝑌 → (𝑁𝑇) ∈ ℝ*)
1211adantr 480 . . . . 5 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → (𝑁𝑇) ∈ ℝ*)
13 simprl 771 . . . . 5 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → 𝑟 ∈ ℝ)
147, 8, 9nmogtmnf 30789 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → -∞ < (𝑁𝑇))
155, 6, 14mp3an12 1453 . . . . . 6 (𝑇:𝑋𝑌 → -∞ < (𝑁𝑇))
1615adantr 480 . . . . 5 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → -∞ < (𝑁𝑇))
17 simprr 773 . . . . 5 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → (𝑁𝑇) ≤ 𝑟)
18 xrre 13211 . . . . 5 ((((𝑁𝑇) ∈ ℝ*𝑟 ∈ ℝ) ∧ (-∞ < (𝑁𝑇) ∧ (𝑁𝑇) ≤ 𝑟)) → (𝑁𝑇) ∈ ℝ)
1912, 13, 16, 17, 18syl22anc 839 . . . 4 ((𝑇:𝑋𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁𝑇) ≤ 𝑟)) → (𝑁𝑇) ∈ ℝ)
2019rexlimdvaa 3156 . . 3 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟 → (𝑁𝑇) ∈ ℝ))
214, 20impbid2 226 . 2 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟))
22 rexr 11307 . . . 4 (𝑟 ∈ ℝ → 𝑟 ∈ ℝ*)
23 nmoubi.l . . . . 5 𝐿 = (normCV𝑈)
24 nmoubi.m . . . . 5 𝑀 = (normCV𝑊)
257, 8, 23, 24, 9, 5, 6nmoubi 30791 . . . 4 ((𝑇:𝑋𝑌𝑟 ∈ ℝ*) → ((𝑁𝑇) ≤ 𝑟 ↔ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
2622, 25sylan2 593 . . 3 ((𝑇:𝑋𝑌𝑟 ∈ ℝ) → ((𝑁𝑇) ≤ 𝑟 ↔ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
2726rexbidva 3177 . 2 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ (𝑁𝑇) ≤ 𝑟 ↔ ∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
2821, 27bitrd 279 1 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  cr 11154  1c1 11156  -∞cmnf 11293  *cxr 11294   < clt 11295  cle 11296  NrmCVeccnv 30603  BaseSetcba 30605  normCVcnmcv 30609   normOpOLD cnmoo 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-grpo 30512  df-gid 30513  df-ginv 30514  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-nmcv 30619  df-nmoo 30764
This theorem is referenced by:  nmounbi  30795  nmobndseqi  30798  nmobndseqiALT  30799  htthlem  30936
  Copyright terms: Public domain W3C validator