| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmobndi | Structured version Visualization version GIF version | ||
| Description: Two ways to express that an operator is bounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmoubi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nmoubi.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| nmoubi.l | ⊢ 𝐿 = (normCV‘𝑈) |
| nmoubi.m | ⊢ 𝑀 = (normCV‘𝑊) |
| nmoubi.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| nmoubi.u | ⊢ 𝑈 ∈ NrmCVec |
| nmoubi.w | ⊢ 𝑊 ∈ NrmCVec |
| Ref | Expression |
|---|---|
| nmobndi | ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leid 11212 | . . . 4 ⊢ ((𝑁‘𝑇) ∈ ℝ → (𝑁‘𝑇) ≤ (𝑁‘𝑇)) | |
| 2 | breq2 5096 | . . . . 5 ⊢ (𝑟 = (𝑁‘𝑇) → ((𝑁‘𝑇) ≤ 𝑟 ↔ (𝑁‘𝑇) ≤ (𝑁‘𝑇))) | |
| 3 | 2 | rspcev 3577 | . . . 4 ⊢ (((𝑁‘𝑇) ∈ ℝ ∧ (𝑁‘𝑇) ≤ (𝑁‘𝑇)) → ∃𝑟 ∈ ℝ (𝑁‘𝑇) ≤ 𝑟) |
| 4 | 1, 3 | mpdan 687 | . . 3 ⊢ ((𝑁‘𝑇) ∈ ℝ → ∃𝑟 ∈ ℝ (𝑁‘𝑇) ≤ 𝑟) |
| 5 | nmoubi.u | . . . . . . 7 ⊢ 𝑈 ∈ NrmCVec | |
| 6 | nmoubi.w | . . . . . . 7 ⊢ 𝑊 ∈ NrmCVec | |
| 7 | nmoubi.1 | . . . . . . . 8 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 8 | nmoubi.y | . . . . . . . 8 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 9 | nmoubi.3 | . . . . . . . 8 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 10 | 7, 8, 9 | nmoxr 30714 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) ∈ ℝ*) |
| 11 | 5, 6, 10 | mp3an12 1453 | . . . . . 6 ⊢ (𝑇:𝑋⟶𝑌 → (𝑁‘𝑇) ∈ ℝ*) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁‘𝑇) ≤ 𝑟)) → (𝑁‘𝑇) ∈ ℝ*) |
| 13 | simprl 770 | . . . . 5 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁‘𝑇) ≤ 𝑟)) → 𝑟 ∈ ℝ) | |
| 14 | 7, 8, 9 | nmogtmnf 30718 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → -∞ < (𝑁‘𝑇)) |
| 15 | 5, 6, 14 | mp3an12 1453 | . . . . . 6 ⊢ (𝑇:𝑋⟶𝑌 → -∞ < (𝑁‘𝑇)) |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁‘𝑇) ≤ 𝑟)) → -∞ < (𝑁‘𝑇)) |
| 17 | simprr 772 | . . . . 5 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁‘𝑇) ≤ 𝑟)) → (𝑁‘𝑇) ≤ 𝑟) | |
| 18 | xrre 13071 | . . . . 5 ⊢ ((((𝑁‘𝑇) ∈ ℝ* ∧ 𝑟 ∈ ℝ) ∧ (-∞ < (𝑁‘𝑇) ∧ (𝑁‘𝑇) ≤ 𝑟)) → (𝑁‘𝑇) ∈ ℝ) | |
| 19 | 12, 13, 16, 17, 18 | syl22anc 838 | . . . 4 ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑟 ∈ ℝ ∧ (𝑁‘𝑇) ≤ 𝑟)) → (𝑁‘𝑇) ∈ ℝ) |
| 20 | 19 | rexlimdvaa 3131 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → (∃𝑟 ∈ ℝ (𝑁‘𝑇) ≤ 𝑟 → (𝑁‘𝑇) ∈ ℝ)) |
| 21 | 4, 20 | impbid2 226 | . 2 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ (𝑁‘𝑇) ≤ 𝑟)) |
| 22 | rexr 11161 | . . . 4 ⊢ (𝑟 ∈ ℝ → 𝑟 ∈ ℝ*) | |
| 23 | nmoubi.l | . . . . 5 ⊢ 𝐿 = (normCV‘𝑈) | |
| 24 | nmoubi.m | . . . . 5 ⊢ 𝑀 = (normCV‘𝑊) | |
| 25 | 7, 8, 23, 24, 9, 5, 6 | nmoubi 30720 | . . . 4 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ*) → ((𝑁‘𝑇) ≤ 𝑟 ↔ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
| 26 | 22, 25 | sylan2 593 | . . 3 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) → ((𝑁‘𝑇) ≤ 𝑟 ↔ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
| 27 | 26 | rexbidva 3151 | . 2 ⊢ (𝑇:𝑋⟶𝑌 → (∃𝑟 ∈ ℝ (𝑁‘𝑇) ≤ 𝑟 ↔ ∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
| 28 | 21, 27 | bitrd 279 | 1 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5092 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 1c1 11010 -∞cmnf 11147 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 NrmCVeccnv 30532 BaseSetcba 30534 normCVcnmcv 30538 normOpOLD cnmoo 30689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-grpo 30441 df-gid 30442 df-ginv 30443 df-ablo 30493 df-vc 30507 df-nv 30540 df-va 30543 df-ba 30544 df-sm 30545 df-0v 30546 df-nmcv 30548 df-nmoo 30693 |
| This theorem is referenced by: nmounbi 30724 nmobndseqi 30727 nmobndseqiALT 30728 htthlem 30865 |
| Copyright terms: Public domain | W3C validator |