![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > msqge0 | Structured version Visualization version GIF version |
Description: A square is nonnegative. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
msqge0 | ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 6887 | . . . . 5 ⊢ ((𝐴 = 0 ∧ 𝐴 = 0) → (𝐴 · 𝐴) = (0 · 0)) | |
2 | 1 | anidms 563 | . . . 4 ⊢ (𝐴 = 0 → (𝐴 · 𝐴) = (0 · 0)) |
3 | 0cn 10320 | . . . . 5 ⊢ 0 ∈ ℂ | |
4 | 3 | mul01i 10516 | . . . 4 ⊢ (0 · 0) = 0 |
5 | 2, 4 | syl6eq 2849 | . . 3 ⊢ (𝐴 = 0 → (𝐴 · 𝐴) = 0) |
6 | 5 | breq2d 4855 | . 2 ⊢ (𝐴 = 0 → (0 ≤ (𝐴 · 𝐴) ↔ 0 ≤ 0)) |
7 | 0red 10332 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 ∈ ℝ) | |
8 | simpl 475 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ) | |
9 | 8, 8 | remulcld 10359 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 · 𝐴) ∈ ℝ) |
10 | msqgt0 10840 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 < (𝐴 · 𝐴)) | |
11 | 7, 9, 10 | ltled 10475 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 ≤ (𝐴 · 𝐴)) |
12 | 0re 10330 | . . 3 ⊢ 0 ∈ ℝ | |
13 | leid 10423 | . . 3 ⊢ (0 ∈ ℝ → 0 ≤ 0) | |
14 | 12, 13 | mp1i 13 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ≤ 0) |
15 | 6, 11, 14 | pm2.61ne 3056 | 1 ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 class class class wbr 4843 (class class class)co 6878 ℝcr 10223 0cc0 10224 · cmul 10229 ≤ cle 10364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 |
This theorem is referenced by: msqge0i 10858 msqge0d 10888 recextlem2 10950 sqge0 13194 bernneq 13244 |
Copyright terms: Public domain | W3C validator |