MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  msqge0 Structured version   Visualization version   GIF version

Theorem msqge0 10841
Description: A square is nonnegative. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
msqge0 (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))

Proof of Theorem msqge0
StepHypRef Expression
1 oveq12 6887 . . . . 5 ((𝐴 = 0 ∧ 𝐴 = 0) → (𝐴 · 𝐴) = (0 · 0))
21anidms 563 . . . 4 (𝐴 = 0 → (𝐴 · 𝐴) = (0 · 0))
3 0cn 10320 . . . . 5 0 ∈ ℂ
43mul01i 10516 . . . 4 (0 · 0) = 0
52, 4syl6eq 2849 . . 3 (𝐴 = 0 → (𝐴 · 𝐴) = 0)
65breq2d 4855 . 2 (𝐴 = 0 → (0 ≤ (𝐴 · 𝐴) ↔ 0 ≤ 0))
7 0red 10332 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 ∈ ℝ)
8 simpl 475 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ)
98, 8remulcld 10359 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 · 𝐴) ∈ ℝ)
10 msqgt0 10840 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 < (𝐴 · 𝐴))
117, 9, 10ltled 10475 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 ≤ (𝐴 · 𝐴))
12 0re 10330 . . 3 0 ∈ ℝ
13 leid 10423 . . 3 (0 ∈ ℝ → 0 ≤ 0)
1412, 13mp1i 13 . 2 (𝐴 ∈ ℝ → 0 ≤ 0)
156, 11, 14pm2.61ne 3056 1 (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wne 2971   class class class wbr 4843  (class class class)co 6878  cr 10223  0cc0 10224   · cmul 10229  cle 10364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559
This theorem is referenced by:  msqge0i  10858  msqge0d  10888  recextlem2  10950  sqge0  13194  bernneq  13244
  Copyright terms: Public domain W3C validator