| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn2ge | Structured version Visualization version GIF version | ||
| Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nn2ge | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 12193 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 3 | nnre 12193 | . . 3 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ) |
| 5 | leid 11270 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → 𝐵 ≤ 𝐵) | |
| 6 | 5 | anim1ci 616 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) |
| 7 | 3, 6 | sylan 580 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) → (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) |
| 8 | breq2 5111 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵)) | |
| 9 | breq2 5111 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐵 ≤ 𝑥 ↔ 𝐵 ≤ 𝐵)) | |
| 10 | 8, 9 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) |
| 11 | 10 | rspcev 3588 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
| 12 | 7, 11 | syldan 591 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
| 13 | 12 | adantll 714 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 ≤ 𝐵) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
| 14 | leid 11270 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | |
| 15 | 14 | anim1i 615 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ≤ 𝐴) → (𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴)) |
| 16 | 1, 15 | sylan 580 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ≤ 𝐴) → (𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴)) |
| 17 | breq2 5111 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐴)) | |
| 18 | breq2 5111 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐵 ≤ 𝑥 ↔ 𝐵 ≤ 𝐴)) | |
| 19 | 17, 18 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥) ↔ (𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴))) |
| 20 | 19 | rspcev 3588 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ (𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴)) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
| 21 | 16, 20 | syldan 591 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ≤ 𝐴) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
| 22 | 21 | adantlr 715 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐵 ≤ 𝐴) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
| 23 | 2, 4, 13, 22 | lecasei 11280 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5107 ℝcr 11067 ≤ cle 11209 ℕcn 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-i2m1 11136 ax-1ne0 11137 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-nn 12187 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |