Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn2ge | Structured version Visualization version GIF version |
Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nn2ge | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 11980 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ) |
3 | nnre 11980 | . . 3 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
4 | 3 | adantl 482 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ) |
5 | leid 11071 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → 𝐵 ≤ 𝐵) | |
6 | 5 | anim1ci 616 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) |
7 | 3, 6 | sylan 580 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) → (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) |
8 | breq2 5078 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵)) | |
9 | breq2 5078 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐵 ≤ 𝑥 ↔ 𝐵 ≤ 𝐵)) | |
10 | 8, 9 | anbi12d 631 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) |
11 | 10 | rspcev 3561 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
12 | 7, 11 | syldan 591 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
13 | 12 | adantll 711 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 ≤ 𝐵) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
14 | leid 11071 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | |
15 | 14 | anim1i 615 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ≤ 𝐴) → (𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴)) |
16 | 1, 15 | sylan 580 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ≤ 𝐴) → (𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴)) |
17 | breq2 5078 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐴)) | |
18 | breq2 5078 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐵 ≤ 𝑥 ↔ 𝐵 ≤ 𝐴)) | |
19 | 17, 18 | anbi12d 631 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥) ↔ (𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴))) |
20 | 19 | rspcev 3561 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ (𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴)) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
21 | 16, 20 | syldan 591 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ≤ 𝐴) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
22 | 21 | adantlr 712 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐵 ≤ 𝐴) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
23 | 2, 4, 13, 22 | lecasei 11081 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 ℝcr 10870 ≤ cle 11010 ℕcn 11973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-i2m1 10939 ax-1ne0 10940 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-nn 11974 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |