MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn2ge Structured version   Visualization version   GIF version

Theorem nn2ge 12188
Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.)
Assertion
Ref Expression
nn2ge ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nn2ge
StepHypRef Expression
1 nnre 12168 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
21adantr 482 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
3 nnre 12168 . . 3 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
43adantl 483 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
5 leid 11259 . . . . . 6 (𝐵 ∈ ℝ → 𝐵𝐵)
65anim1ci 617 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴𝐵𝐵𝐵))
73, 6sylan 581 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐴𝐵) → (𝐴𝐵𝐵𝐵))
8 breq2 5113 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
9 breq2 5113 . . . . . 6 (𝑥 = 𝐵 → (𝐵𝑥𝐵𝐵))
108, 9anbi12d 632 . . . . 5 (𝑥 = 𝐵 → ((𝐴𝑥𝐵𝑥) ↔ (𝐴𝐵𝐵𝐵)))
1110rspcev 3583 . . . 4 ((𝐵 ∈ ℕ ∧ (𝐴𝐵𝐵𝐵)) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
127, 11syldan 592 . . 3 ((𝐵 ∈ ℕ ∧ 𝐴𝐵) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
1312adantll 713 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴𝐵) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
14 leid 11259 . . . . . 6 (𝐴 ∈ ℝ → 𝐴𝐴)
1514anim1i 616 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵𝐴) → (𝐴𝐴𝐵𝐴))
161, 15sylan 581 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵𝐴) → (𝐴𝐴𝐵𝐴))
17 breq2 5113 . . . . . 6 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
18 breq2 5113 . . . . . 6 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
1917, 18anbi12d 632 . . . . 5 (𝑥 = 𝐴 → ((𝐴𝑥𝐵𝑥) ↔ (𝐴𝐴𝐵𝐴)))
2019rspcev 3583 . . . 4 ((𝐴 ∈ ℕ ∧ (𝐴𝐴𝐵𝐴)) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
2116, 20syldan 592 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵𝐴) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
2221adantlr 714 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐵𝐴) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
232, 4, 13, 22lecasei 11269 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wrex 3070   class class class wbr 5109  cr 11058  cle 11198  cn 12161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-i2m1 11127  ax-1ne0 11128  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-nn 12162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator