![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn2ge | Structured version Visualization version GIF version |
Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nn2ge | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 12252 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
2 | 1 | adantr 479 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ) |
3 | nnre 12252 | . . 3 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
4 | 3 | adantl 480 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ) |
5 | leid 11342 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → 𝐵 ≤ 𝐵) | |
6 | 5 | anim1ci 614 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) |
7 | 3, 6 | sylan 578 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) → (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) |
8 | breq2 5153 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵)) | |
9 | breq2 5153 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐵 ≤ 𝑥 ↔ 𝐵 ≤ 𝐵)) | |
10 | 8, 9 | anbi12d 630 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) |
11 | 10 | rspcev 3606 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
12 | 7, 11 | syldan 589 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
13 | 12 | adantll 712 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 ≤ 𝐵) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
14 | leid 11342 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | |
15 | 14 | anim1i 613 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ≤ 𝐴) → (𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴)) |
16 | 1, 15 | sylan 578 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ≤ 𝐴) → (𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴)) |
17 | breq2 5153 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐴)) | |
18 | breq2 5153 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐵 ≤ 𝑥 ↔ 𝐵 ≤ 𝐴)) | |
19 | 17, 18 | anbi12d 630 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥) ↔ (𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴))) |
20 | 19 | rspcev 3606 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ (𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴)) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
21 | 16, 20 | syldan 589 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ≤ 𝐴) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
22 | 21 | adantlr 713 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐵 ≤ 𝐴) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
23 | 2, 4, 13, 22 | lecasei 11352 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 class class class wbr 5149 ℝcr 11139 ≤ cle 11281 ℕcn 12245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-i2m1 11208 ax-1ne0 11209 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-nn 12246 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |