MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn2ge Structured version   Visualization version   GIF version

Theorem nn2ge 12291
Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.)
Assertion
Ref Expression
nn2ge ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nn2ge
StepHypRef Expression
1 nnre 12271 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
21adantr 480 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
3 nnre 12271 . . 3 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
43adantl 481 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
5 leid 11355 . . . . . 6 (𝐵 ∈ ℝ → 𝐵𝐵)
65anim1ci 616 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴𝐵𝐵𝐵))
73, 6sylan 580 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐴𝐵) → (𝐴𝐵𝐵𝐵))
8 breq2 5152 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
9 breq2 5152 . . . . . 6 (𝑥 = 𝐵 → (𝐵𝑥𝐵𝐵))
108, 9anbi12d 632 . . . . 5 (𝑥 = 𝐵 → ((𝐴𝑥𝐵𝑥) ↔ (𝐴𝐵𝐵𝐵)))
1110rspcev 3622 . . . 4 ((𝐵 ∈ ℕ ∧ (𝐴𝐵𝐵𝐵)) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
127, 11syldan 591 . . 3 ((𝐵 ∈ ℕ ∧ 𝐴𝐵) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
1312adantll 714 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴𝐵) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
14 leid 11355 . . . . . 6 (𝐴 ∈ ℝ → 𝐴𝐴)
1514anim1i 615 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵𝐴) → (𝐴𝐴𝐵𝐴))
161, 15sylan 580 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵𝐴) → (𝐴𝐴𝐵𝐴))
17 breq2 5152 . . . . . 6 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
18 breq2 5152 . . . . . 6 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
1917, 18anbi12d 632 . . . . 5 (𝑥 = 𝐴 → ((𝐴𝑥𝐵𝑥) ↔ (𝐴𝐴𝐵𝐴)))
2019rspcev 3622 . . . 4 ((𝐴 ∈ ℕ ∧ (𝐴𝐴𝐵𝐴)) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
2116, 20syldan 591 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵𝐴) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
2221adantlr 715 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐵𝐴) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
232, 4, 13, 22lecasei 11365 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068   class class class wbr 5148  cr 11152  cle 11294  cn 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-i2m1 11221  ax-1ne0 11222  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-nn 12265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator