MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn2ge Structured version   Visualization version   GIF version

Theorem nn2ge 12163
Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.)
Assertion
Ref Expression
nn2ge ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nn2ge
StepHypRef Expression
1 nnre 12143 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
21adantr 480 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
3 nnre 12143 . . 3 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
43adantl 481 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
5 leid 11220 . . . . . 6 (𝐵 ∈ ℝ → 𝐵𝐵)
65anim1ci 616 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴𝐵𝐵𝐵))
73, 6sylan 580 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐴𝐵) → (𝐴𝐵𝐵𝐵))
8 breq2 5099 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
9 breq2 5099 . . . . . 6 (𝑥 = 𝐵 → (𝐵𝑥𝐵𝐵))
108, 9anbi12d 632 . . . . 5 (𝑥 = 𝐵 → ((𝐴𝑥𝐵𝑥) ↔ (𝐴𝐵𝐵𝐵)))
1110rspcev 3573 . . . 4 ((𝐵 ∈ ℕ ∧ (𝐴𝐵𝐵𝐵)) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
127, 11syldan 591 . . 3 ((𝐵 ∈ ℕ ∧ 𝐴𝐵) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
1312adantll 714 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴𝐵) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
14 leid 11220 . . . . . 6 (𝐴 ∈ ℝ → 𝐴𝐴)
1514anim1i 615 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵𝐴) → (𝐴𝐴𝐵𝐴))
161, 15sylan 580 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵𝐴) → (𝐴𝐴𝐵𝐴))
17 breq2 5099 . . . . . 6 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
18 breq2 5099 . . . . . 6 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
1917, 18anbi12d 632 . . . . 5 (𝑥 = 𝐴 → ((𝐴𝑥𝐵𝑥) ↔ (𝐴𝐴𝐵𝐴)))
2019rspcev 3573 . . . 4 ((𝐴 ∈ ℕ ∧ (𝐴𝐴𝐵𝐴)) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
2116, 20syldan 591 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵𝐴) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
2221adantlr 715 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐵𝐴) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
232, 4, 13, 22lecasei 11230 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wrex 3057   class class class wbr 5095  cr 11016  cle 11158  cn 12136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-i2m1 11085  ax-1ne0 11086  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-nn 12137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator