| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dia2dimlem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for dia2dim 41038. Eliminate no-longer used auxiliary atoms 𝑃 and 𝑄. (Contributed by NM, 8-Sep-2014.) |
| Ref | Expression |
|---|---|
| dia2dimlem8.l | ⊢ ≤ = (le‘𝐾) |
| dia2dimlem8.j | ⊢ ∨ = (join‘𝐾) |
| dia2dimlem8.m | ⊢ ∧ = (meet‘𝐾) |
| dia2dimlem8.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dia2dimlem8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dia2dimlem8.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dia2dimlem8.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| dia2dimlem8.y | ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) |
| dia2dimlem8.s | ⊢ 𝑆 = (LSubSp‘𝑌) |
| dia2dimlem8.pl | ⊢ ⊕ = (LSSum‘𝑌) |
| dia2dimlem8.n | ⊢ 𝑁 = (LSpan‘𝑌) |
| dia2dimlem8.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| dia2dimlem8.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dia2dimlem8.u | ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) |
| dia2dimlem8.v | ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) |
| dia2dimlem8.f | ⊢ (𝜑 → 𝐹 ∈ 𝑇) |
| dia2dimlem8.rf | ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) |
| dia2dimlem8.uv | ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
| dia2dimlem8.ru | ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) |
| dia2dimlem8.rv | ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) |
| Ref | Expression |
|---|---|
| dia2dimlem8 | ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dia2dimlem8.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 2 | dia2dimlem8.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 3 | dia2dimlem8.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 4 | dia2dimlem8.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | dia2dimlem8.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | dia2dimlem8.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 7 | dia2dimlem8.r | . 2 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 8 | dia2dimlem8.y | . 2 ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) | |
| 9 | dia2dimlem8.s | . 2 ⊢ 𝑆 = (LSubSp‘𝑌) | |
| 10 | dia2dimlem8.pl | . 2 ⊢ ⊕ = (LSSum‘𝑌) | |
| 11 | dia2dimlem8.n | . 2 ⊢ 𝑁 = (LSpan‘𝑌) | |
| 12 | dia2dimlem8.i | . 2 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 13 | eqid 2734 | . 2 ⊢ ((((oc‘𝐾)‘𝑊) ∨ 𝑈) ∧ ((𝐹‘((oc‘𝐾)‘𝑊)) ∨ 𝑉)) = ((((oc‘𝐾)‘𝑊) ∨ 𝑈) ∧ ((𝐹‘((oc‘𝐾)‘𝑊)) ∨ 𝑉)) | |
| 14 | dia2dimlem8.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | dia2dimlem8.u | . 2 ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) | |
| 16 | dia2dimlem8.v | . 2 ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) | |
| 17 | eqid 2734 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 18 | 1, 17, 4, 5 | lhpocnel 39979 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
| 19 | 14, 18 | syl 17 | . 2 ⊢ (𝜑 → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
| 20 | dia2dimlem8.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑇) | |
| 21 | dia2dimlem8.rf | . 2 ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) | |
| 22 | dia2dimlem8.uv | . 2 ⊢ (𝜑 → 𝑈 ≠ 𝑉) | |
| 23 | dia2dimlem8.ru | . 2 ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) | |
| 24 | dia2dimlem8.rv | . 2 ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) | |
| 25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24 | dia2dimlem7 41031 | 1 ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 lecple 17280 occoc 17281 joincjn 18327 meetcmee 18328 LSSumclsm 19620 LSubSpclss 20897 LSpanclspn 20937 Atomscatm 39223 HLchlt 39310 LHypclh 39945 LTrncltrn 40062 trLctrl 40119 DVecAcdveca 40963 DIsoAcdia 40989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-riotaBAD 38913 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-undef 8280 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-sca 17289 df-vsca 17290 df-0g 17457 df-proset 18310 df-poset 18329 df-plt 18344 df-lub 18360 df-glb 18361 df-join 18362 df-meet 18363 df-p0 18439 df-p1 18440 df-lat 18446 df-clat 18513 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-submnd 18766 df-grp 18923 df-minusg 18924 df-sbg 18925 df-subg 19110 df-cntz 19304 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-dvr 20369 df-drng 20699 df-lmod 20828 df-lss 20898 df-lsp 20938 df-lvec 21070 df-oposet 39136 df-ol 39138 df-oml 39139 df-covers 39226 df-ats 39227 df-atl 39258 df-cvlat 39282 df-hlat 39311 df-llines 39459 df-lplanes 39460 df-lvols 39461 df-lines 39462 df-psubsp 39464 df-pmap 39465 df-padd 39757 df-lhyp 39949 df-laut 39950 df-ldil 40065 df-ltrn 40066 df-trl 40120 df-tgrp 40704 df-tendo 40716 df-edring 40718 df-dveca 40964 df-disoa 40990 |
| This theorem is referenced by: dia2dimlem9 41033 |
| Copyright terms: Public domain | W3C validator |