![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dia2dimlem8 | Structured version Visualization version GIF version |
Description: Lemma for dia2dim 41074. Eliminate no-longer used auxiliary atoms 𝑃 and 𝑄. (Contributed by NM, 8-Sep-2014.) |
Ref | Expression |
---|---|
dia2dimlem8.l | ⊢ ≤ = (le‘𝐾) |
dia2dimlem8.j | ⊢ ∨ = (join‘𝐾) |
dia2dimlem8.m | ⊢ ∧ = (meet‘𝐾) |
dia2dimlem8.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dia2dimlem8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dia2dimlem8.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dia2dimlem8.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
dia2dimlem8.y | ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) |
dia2dimlem8.s | ⊢ 𝑆 = (LSubSp‘𝑌) |
dia2dimlem8.pl | ⊢ ⊕ = (LSSum‘𝑌) |
dia2dimlem8.n | ⊢ 𝑁 = (LSpan‘𝑌) |
dia2dimlem8.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
dia2dimlem8.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dia2dimlem8.u | ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) |
dia2dimlem8.v | ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) |
dia2dimlem8.f | ⊢ (𝜑 → 𝐹 ∈ 𝑇) |
dia2dimlem8.rf | ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) |
dia2dimlem8.uv | ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
dia2dimlem8.ru | ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) |
dia2dimlem8.rv | ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) |
Ref | Expression |
---|---|
dia2dimlem8 | ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dia2dimlem8.l | . 2 ⊢ ≤ = (le‘𝐾) | |
2 | dia2dimlem8.j | . 2 ⊢ ∨ = (join‘𝐾) | |
3 | dia2dimlem8.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
4 | dia2dimlem8.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | dia2dimlem8.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | dia2dimlem8.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
7 | dia2dimlem8.r | . 2 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
8 | dia2dimlem8.y | . 2 ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) | |
9 | dia2dimlem8.s | . 2 ⊢ 𝑆 = (LSubSp‘𝑌) | |
10 | dia2dimlem8.pl | . 2 ⊢ ⊕ = (LSSum‘𝑌) | |
11 | dia2dimlem8.n | . 2 ⊢ 𝑁 = (LSpan‘𝑌) | |
12 | dia2dimlem8.i | . 2 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
13 | eqid 2737 | . 2 ⊢ ((((oc‘𝐾)‘𝑊) ∨ 𝑈) ∧ ((𝐹‘((oc‘𝐾)‘𝑊)) ∨ 𝑉)) = ((((oc‘𝐾)‘𝑊) ∨ 𝑈) ∧ ((𝐹‘((oc‘𝐾)‘𝑊)) ∨ 𝑉)) | |
14 | dia2dimlem8.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | dia2dimlem8.u | . 2 ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) | |
16 | dia2dimlem8.v | . 2 ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) | |
17 | eqid 2737 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
18 | 1, 17, 4, 5 | lhpocnel 40015 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
19 | 14, 18 | syl 17 | . 2 ⊢ (𝜑 → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
20 | dia2dimlem8.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑇) | |
21 | dia2dimlem8.rf | . 2 ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) | |
22 | dia2dimlem8.uv | . 2 ⊢ (𝜑 → 𝑈 ≠ 𝑉) | |
23 | dia2dimlem8.ru | . 2 ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) | |
24 | dia2dimlem8.rv | . 2 ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) | |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24 | dia2dimlem7 41067 | 1 ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 class class class wbr 5151 ‘cfv 6569 (class class class)co 7438 lecple 17314 occoc 17315 joincjn 18378 meetcmee 18379 LSSumclsm 19676 LSubSpclss 20956 LSpanclspn 20996 Atomscatm 39259 HLchlt 39346 LHypclh 39981 LTrncltrn 40098 trLctrl 40155 DVecAcdveca 40999 DIsoAcdia 41025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-riotaBAD 38949 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-tpos 8259 df-undef 8306 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-sca 17323 df-vsca 17324 df-0g 17497 df-proset 18361 df-poset 18380 df-plt 18397 df-lub 18413 df-glb 18414 df-join 18415 df-meet 18416 df-p0 18492 df-p1 18493 df-lat 18499 df-clat 18566 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-drng 20757 df-lmod 20886 df-lss 20957 df-lsp 20997 df-lvec 21129 df-oposet 39172 df-ol 39174 df-oml 39175 df-covers 39262 df-ats 39263 df-atl 39294 df-cvlat 39318 df-hlat 39347 df-llines 39495 df-lplanes 39496 df-lvols 39497 df-lines 39498 df-psubsp 39500 df-pmap 39501 df-padd 39793 df-lhyp 39985 df-laut 39986 df-ldil 40101 df-ltrn 40102 df-trl 40156 df-tgrp 40740 df-tendo 40752 df-edring 40754 df-dveca 41000 df-disoa 41026 |
This theorem is referenced by: dia2dimlem9 41069 |
Copyright terms: Public domain | W3C validator |