| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpocnel2 | Structured version Visualization version GIF version | ||
| Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014.) |
| Ref | Expression |
|---|---|
| lhpocnel2.l | ⊢ ≤ = (le‘𝐾) |
| lhpocnel2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhpocnel2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lhpocnel2.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| lhpocnel2 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhpocnel2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 3 | lhpocnel2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | lhpocnel2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | 1, 2, 3, 4 | lhpocnel 39985 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
| 6 | lhpocnel2.p | . . . 4 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 7 | 6 | eleq1i 2819 | . . 3 ⊢ (𝑃 ∈ 𝐴 ↔ ((oc‘𝐾)‘𝑊) ∈ 𝐴) |
| 8 | 6 | breq1i 5109 | . . . 4 ⊢ (𝑃 ≤ 𝑊 ↔ ((oc‘𝐾)‘𝑊) ≤ 𝑊) |
| 9 | 8 | notbii 320 | . . 3 ⊢ (¬ 𝑃 ≤ 𝑊 ↔ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊) |
| 10 | 7, 9 | anbi12i 628 | . 2 ⊢ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ↔ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
| 11 | 5, 10 | sylibr 234 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 lecple 17203 occoc 17204 Atomscatm 39229 HLchlt 39316 LHypclh 39951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-oposet 39142 df-ol 39144 df-oml 39145 df-covers 39232 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 df-lhyp 39955 |
| This theorem is referenced by: cdlemk56w 40940 diclspsn 41161 cdlemn3 41164 cdlemn4 41165 cdlemn4a 41166 cdlemn6 41169 cdlemn8 41171 cdlemn9 41172 cdlemn11a 41174 dihordlem7b 41182 dihopelvalcpre 41215 dihmeetlem1N 41257 dihglblem5apreN 41258 dihglbcpreN 41267 dihmeetlem4preN 41273 dihmeetlem13N 41286 dih1dimatlem0 41295 dih1dimatlem 41296 dihpN 41303 dihatexv 41305 dihjatcclem3 41387 dihjatcclem4 41388 |
| Copyright terms: Public domain | W3C validator |