| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpocnel2 | Structured version Visualization version GIF version | ||
| Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014.) |
| Ref | Expression |
|---|---|
| lhpocnel2.l | ⊢ ≤ = (le‘𝐾) |
| lhpocnel2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhpocnel2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lhpocnel2.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| lhpocnel2 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhpocnel2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 3 | lhpocnel2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | lhpocnel2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | 1, 2, 3, 4 | lhpocnel 39997 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
| 6 | lhpocnel2.p | . . . 4 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 7 | 6 | eleq1i 2819 | . . 3 ⊢ (𝑃 ∈ 𝐴 ↔ ((oc‘𝐾)‘𝑊) ∈ 𝐴) |
| 8 | 6 | breq1i 5099 | . . . 4 ⊢ (𝑃 ≤ 𝑊 ↔ ((oc‘𝐾)‘𝑊) ≤ 𝑊) |
| 9 | 8 | notbii 320 | . . 3 ⊢ (¬ 𝑃 ≤ 𝑊 ↔ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊) |
| 10 | 7, 9 | anbi12i 628 | . 2 ⊢ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ↔ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
| 11 | 5, 10 | sylibr 234 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 lecple 17168 occoc 17169 Atomscatm 39242 HLchlt 39329 LHypclh 39963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-oposet 39155 df-ol 39157 df-oml 39158 df-covers 39245 df-ats 39246 df-atl 39277 df-cvlat 39301 df-hlat 39330 df-lhyp 39967 |
| This theorem is referenced by: cdlemk56w 40952 diclspsn 41173 cdlemn3 41176 cdlemn4 41177 cdlemn4a 41178 cdlemn6 41181 cdlemn8 41183 cdlemn9 41184 cdlemn11a 41186 dihordlem7b 41194 dihopelvalcpre 41227 dihmeetlem1N 41269 dihglblem5apreN 41270 dihglbcpreN 41279 dihmeetlem4preN 41285 dihmeetlem13N 41298 dih1dimatlem0 41307 dih1dimatlem 41308 dihpN 41315 dihatexv 41317 dihjatcclem3 41399 dihjatcclem4 41400 |
| Copyright terms: Public domain | W3C validator |