| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpocnel2 | Structured version Visualization version GIF version | ||
| Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014.) |
| Ref | Expression |
|---|---|
| lhpocnel2.l | ⊢ ≤ = (le‘𝐾) |
| lhpocnel2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhpocnel2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lhpocnel2.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| lhpocnel2 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhpocnel2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 2 | eqid 2735 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 3 | lhpocnel2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | lhpocnel2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | 1, 2, 3, 4 | lhpocnel 39983 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
| 6 | lhpocnel2.p | . . . 4 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 7 | 6 | eleq1i 2825 | . . 3 ⊢ (𝑃 ∈ 𝐴 ↔ ((oc‘𝐾)‘𝑊) ∈ 𝐴) |
| 8 | 6 | breq1i 5126 | . . . 4 ⊢ (𝑃 ≤ 𝑊 ↔ ((oc‘𝐾)‘𝑊) ≤ 𝑊) |
| 9 | 8 | notbii 320 | . . 3 ⊢ (¬ 𝑃 ≤ 𝑊 ↔ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊) |
| 10 | 7, 9 | anbi12i 628 | . 2 ⊢ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ↔ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
| 11 | 5, 10 | sylibr 234 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6530 lecple 17276 occoc 17277 Atomscatm 39227 HLchlt 39314 LHypclh 39949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-proset 18304 df-poset 18323 df-plt 18338 df-lub 18354 df-glb 18355 df-meet 18357 df-p0 18433 df-p1 18434 df-lat 18440 df-oposet 39140 df-ol 39142 df-oml 39143 df-covers 39230 df-ats 39231 df-atl 39262 df-cvlat 39286 df-hlat 39315 df-lhyp 39953 |
| This theorem is referenced by: cdlemk56w 40938 diclspsn 41159 cdlemn3 41162 cdlemn4 41163 cdlemn4a 41164 cdlemn6 41167 cdlemn8 41169 cdlemn9 41170 cdlemn11a 41172 dihordlem7b 41180 dihopelvalcpre 41213 dihmeetlem1N 41255 dihglblem5apreN 41256 dihglbcpreN 41265 dihmeetlem4preN 41271 dihmeetlem13N 41284 dih1dimatlem0 41293 dih1dimatlem 41294 dihpN 41301 dihatexv 41303 dihjatcclem3 41385 dihjatcclem4 41386 |
| Copyright terms: Public domain | W3C validator |