Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpocnel2 Structured version   Visualization version   GIF version

Theorem lhpocnel2 39976
Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014.)
Hypotheses
Ref Expression
lhpocnel2.l = (le‘𝐾)
lhpocnel2.a 𝐴 = (Atoms‘𝐾)
lhpocnel2.h 𝐻 = (LHyp‘𝐾)
lhpocnel2.p 𝑃 = ((oc‘𝐾)‘𝑊)
Assertion
Ref Expression
lhpocnel2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))

Proof of Theorem lhpocnel2
StepHypRef Expression
1 lhpocnel2.l . . 3 = (le‘𝐾)
2 eqid 2740 . . 3 (oc‘𝐾) = (oc‘𝐾)
3 lhpocnel2.a . . 3 𝐴 = (Atoms‘𝐾)
4 lhpocnel2.h . . 3 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4lhpocnel 39975 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
6 lhpocnel2.p . . . 4 𝑃 = ((oc‘𝐾)‘𝑊)
76eleq1i 2835 . . 3 (𝑃𝐴 ↔ ((oc‘𝐾)‘𝑊) ∈ 𝐴)
86breq1i 5173 . . . 4 (𝑃 𝑊 ↔ ((oc‘𝐾)‘𝑊) 𝑊)
98notbii 320 . . 3 𝑃 𝑊 ↔ ¬ ((oc‘𝐾)‘𝑊) 𝑊)
107, 9anbi12i 627 . 2 ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ↔ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
115, 10sylibr 234 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  lecple 17318  occoc 17319  Atomscatm 39219  HLchlt 39306  LHypclh 39941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-lhyp 39945
This theorem is referenced by:  cdlemk56w  40930  diclspsn  41151  cdlemn3  41154  cdlemn4  41155  cdlemn4a  41156  cdlemn6  41159  cdlemn8  41161  cdlemn9  41162  cdlemn11a  41164  dihordlem7b  41172  dihopelvalcpre  41205  dihmeetlem1N  41247  dihglblem5apreN  41248  dihglbcpreN  41257  dihmeetlem4preN  41263  dihmeetlem13N  41276  dih1dimatlem0  41285  dih1dimatlem  41286  dihpN  41293  dihatexv  41295  dihjatcclem3  41377  dihjatcclem4  41378
  Copyright terms: Public domain W3C validator