Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpocnel2 | Structured version Visualization version GIF version |
Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014.) |
Ref | Expression |
---|---|
lhpocnel2.l | ⊢ ≤ = (le‘𝐾) |
lhpocnel2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhpocnel2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lhpocnel2.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
lhpocnel2 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpocnel2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | eqid 2738 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
3 | lhpocnel2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | lhpocnel2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 1, 2, 3, 4 | lhpocnel 37959 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
6 | lhpocnel2.p | . . . 4 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
7 | 6 | eleq1i 2829 | . . 3 ⊢ (𝑃 ∈ 𝐴 ↔ ((oc‘𝐾)‘𝑊) ∈ 𝐴) |
8 | 6 | breq1i 5077 | . . . 4 ⊢ (𝑃 ≤ 𝑊 ↔ ((oc‘𝐾)‘𝑊) ≤ 𝑊) |
9 | 8 | notbii 319 | . . 3 ⊢ (¬ 𝑃 ≤ 𝑊 ↔ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊) |
10 | 7, 9 | anbi12i 626 | . 2 ⊢ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ↔ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
11 | 5, 10 | sylibr 233 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 lecple 16895 occoc 16896 Atomscatm 37204 HLchlt 37291 LHypclh 37925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-lhyp 37929 |
This theorem is referenced by: cdlemk56w 38914 diclspsn 39135 cdlemn3 39138 cdlemn4 39139 cdlemn4a 39140 cdlemn6 39143 cdlemn8 39145 cdlemn9 39146 cdlemn11a 39148 dihordlem7b 39156 dihopelvalcpre 39189 dihmeetlem1N 39231 dihglblem5apreN 39232 dihglbcpreN 39241 dihmeetlem4preN 39247 dihmeetlem13N 39260 dih1dimatlem0 39269 dih1dimatlem 39270 dihpN 39277 dihatexv 39279 dihjatcclem3 39361 dihjatcclem4 39362 |
Copyright terms: Public domain | W3C validator |