Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpocnel2 Structured version   Visualization version   GIF version

Theorem lhpocnel2 38033
Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014.)
Hypotheses
Ref Expression
lhpocnel2.l = (le‘𝐾)
lhpocnel2.a 𝐴 = (Atoms‘𝐾)
lhpocnel2.h 𝐻 = (LHyp‘𝐾)
lhpocnel2.p 𝑃 = ((oc‘𝐾)‘𝑊)
Assertion
Ref Expression
lhpocnel2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))

Proof of Theorem lhpocnel2
StepHypRef Expression
1 lhpocnel2.l . . 3 = (le‘𝐾)
2 eqid 2738 . . 3 (oc‘𝐾) = (oc‘𝐾)
3 lhpocnel2.a . . 3 𝐴 = (Atoms‘𝐾)
4 lhpocnel2.h . . 3 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4lhpocnel 38032 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
6 lhpocnel2.p . . . 4 𝑃 = ((oc‘𝐾)‘𝑊)
76eleq1i 2829 . . 3 (𝑃𝐴 ↔ ((oc‘𝐾)‘𝑊) ∈ 𝐴)
86breq1i 5081 . . . 4 (𝑃 𝑊 ↔ ((oc‘𝐾)‘𝑊) 𝑊)
98notbii 320 . . 3 𝑃 𝑊 ↔ ¬ ((oc‘𝐾)‘𝑊) 𝑊)
107, 9anbi12i 627 . 2 ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ↔ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
115, 10sylibr 233 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  lecple 16969  occoc 16970  Atomscatm 37277  HLchlt 37364  LHypclh 37998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-lhyp 38002
This theorem is referenced by:  cdlemk56w  38987  diclspsn  39208  cdlemn3  39211  cdlemn4  39212  cdlemn4a  39213  cdlemn6  39216  cdlemn8  39218  cdlemn9  39219  cdlemn11a  39221  dihordlem7b  39229  dihopelvalcpre  39262  dihmeetlem1N  39304  dihglblem5apreN  39305  dihglbcpreN  39314  dihmeetlem4preN  39320  dihmeetlem13N  39333  dih1dimatlem0  39342  dih1dimatlem  39343  dihpN  39350  dihatexv  39352  dihjatcclem3  39434  dihjatcclem4  39435
  Copyright terms: Public domain W3C validator