Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlcl | Structured version Visualization version GIF version |
Description: Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012.) |
Ref | Expression |
---|---|
trlcl.b | ⊢ 𝐵 = (Base‘𝐾) |
trlcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlcl.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlcl.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlcl | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | eqid 2737 | . . . . 5 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
3 | eqid 2737 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
4 | trlcl.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 1, 2, 3, 4 | lhpocnel 37769 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) |
6 | 5 | adantr 484 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) |
7 | eqid 2737 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
8 | eqid 2737 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
9 | trlcl.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | trlcl.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
11 | 1, 7, 8, 3, 4, 9, 10 | trlval2 37914 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
12 | 6, 11 | mpd3an3 1464 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
13 | hllat 37114 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
14 | 13 | ad2antrr 726 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ Lat) |
15 | hlop 37113 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
16 | 15 | ad2antrr 726 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ OP) |
17 | trlcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
18 | 17, 4 | lhpbase 37749 | . . . . . 6 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
19 | 18 | ad2antlr 727 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝑊 ∈ 𝐵) |
20 | 17, 2 | opoccl 36945 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ 𝐵) → ((oc‘𝐾)‘𝑊) ∈ 𝐵) |
21 | 16, 19, 20 | syl2anc 587 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((oc‘𝐾)‘𝑊) ∈ 𝐵) |
22 | 17, 4, 9 | ltrncl 37876 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) |
23 | 21, 22 | mpd3an3 1464 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) |
24 | 17, 7 | latjcl 17945 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵 ∧ (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵) |
25 | 14, 21, 23, 24 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵) |
26 | 17, 8 | latmcl 17946 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵) |
27 | 14, 25, 19, 26 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵) |
28 | 12, 27 | eqeltrd 2838 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 lecple 16809 occoc 16810 joincjn 17818 meetcmee 17819 Latclat 17937 OPcops 36923 Atomscatm 37014 HLchlt 37101 LHypclh 37735 LTrncltrn 37852 trLctrl 37909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-map 8510 df-proset 17802 df-poset 17820 df-plt 17836 df-lub 17852 df-glb 17853 df-join 17854 df-meet 17855 df-p0 17931 df-p1 17932 df-lat 17938 df-oposet 36927 df-ol 36929 df-oml 36930 df-covers 37017 df-ats 37018 df-atl 37049 df-cvlat 37073 df-hlat 37102 df-lhyp 37739 df-laut 37740 df-ldil 37855 df-ltrn 37856 df-trl 37910 |
This theorem is referenced by: trljat1 37917 trljat2 37918 trlval3 37938 cdlemc3 37944 cdlemc5 37946 trlord 38320 cdlemg4c 38363 cdlemg4 38368 cdlemg6c 38371 cdlemg10c 38390 cdlemg10 38392 cdlemg12e 38398 cdlemg17dALTN 38415 cdlemg31a 38448 cdlemg31b 38449 cdlemg35 38464 cdlemg44a 38482 trljco 38491 trljco2 38492 tendoidcl 38520 tendococl 38523 tendoid 38524 tendopltp 38531 tendo0tp 38540 cdlemh1 38566 cdlemh2 38567 cdlemi1 38569 cdlemi 38571 cdlemk9 38590 cdlemk9bN 38591 cdlemkvcl 38593 cdlemk10 38594 cdlemk11 38600 cdlemk11u 38622 cdlemk37 38665 cdlemkfid1N 38672 cdlemkid1 38673 cdlemkid2 38675 cdlemk39s-id 38691 cdlemk48 38701 cdlemk50 38703 cdlemk51 38704 cdlemk52 38705 cdlemk39u 38719 tendoex 38726 dialss 38797 dia0 38803 diaglbN 38806 dia1dim 38812 dia2dimlem2 38816 dia2dimlem3 38817 dia2dimlem10 38824 cdlemm10N 38869 dib1dim 38916 diblss 38921 cdlemn2a 38947 dih1dimb 38991 dihopelvalcpre 38999 dih1 39037 dihmeetlem1N 39041 dihglblem5apreN 39042 dihglbcpreN 39051 dih1dimatlem 39080 |
Copyright terms: Public domain | W3C validator |