| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trlcl | Structured version Visualization version GIF version | ||
| Description: Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012.) |
| Ref | Expression |
|---|---|
| trlcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| trlcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| trlcl.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| trlcl.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| trlcl | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 4 | trlcl.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | 1, 2, 3, 4 | lhpocnel 40065 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) |
| 6 | 5 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) |
| 7 | eqid 2731 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 8 | eqid 2731 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 9 | trlcl.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 10 | trlcl.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 11 | 1, 7, 8, 3, 4, 9, 10 | trlval2 40210 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
| 12 | 6, 11 | mpd3an3 1464 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
| 13 | hllat 39410 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 14 | 13 | ad2antrr 726 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ Lat) |
| 15 | hlop 39409 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 16 | 15 | ad2antrr 726 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ OP) |
| 17 | trlcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 18 | 17, 4 | lhpbase 40045 | . . . . . 6 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 19 | 18 | ad2antlr 727 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝑊 ∈ 𝐵) |
| 20 | 17, 2 | opoccl 39241 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ 𝐵) → ((oc‘𝐾)‘𝑊) ∈ 𝐵) |
| 21 | 16, 19, 20 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((oc‘𝐾)‘𝑊) ∈ 𝐵) |
| 22 | 17, 4, 9 | ltrncl 40172 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) |
| 23 | 21, 22 | mpd3an3 1464 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) |
| 24 | 17, 7 | latjcl 18345 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵 ∧ (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵) |
| 25 | 14, 21, 23, 24 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵) |
| 26 | 17, 8 | latmcl 18346 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵) |
| 27 | 14, 25, 19, 26 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵) |
| 28 | 12, 27 | eqeltrd 2831 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 lecple 17168 occoc 17169 joincjn 18217 meetcmee 18218 Latclat 18337 OPcops 39219 Atomscatm 39310 HLchlt 39397 LHypclh 40031 LTrncltrn 40148 trLctrl 40205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-oposet 39223 df-ol 39225 df-oml 39226 df-covers 39313 df-ats 39314 df-atl 39345 df-cvlat 39369 df-hlat 39398 df-lhyp 40035 df-laut 40036 df-ldil 40151 df-ltrn 40152 df-trl 40206 |
| This theorem is referenced by: trljat1 40213 trljat2 40214 trlval3 40234 cdlemc3 40240 cdlemc5 40242 trlord 40616 cdlemg4c 40659 cdlemg4 40664 cdlemg6c 40667 cdlemg10c 40686 cdlemg10 40688 cdlemg12e 40694 cdlemg17dALTN 40711 cdlemg31a 40744 cdlemg31b 40745 cdlemg35 40760 cdlemg44a 40778 trljco 40787 trljco2 40788 tendoidcl 40816 tendococl 40819 tendoid 40820 tendopltp 40827 tendo0tp 40836 cdlemh1 40862 cdlemh2 40863 cdlemi1 40865 cdlemi 40867 cdlemk9 40886 cdlemk9bN 40887 cdlemkvcl 40889 cdlemk10 40890 cdlemk11 40896 cdlemk11u 40918 cdlemk37 40961 cdlemkfid1N 40968 cdlemkid1 40969 cdlemkid2 40971 cdlemk39s-id 40987 cdlemk48 40997 cdlemk50 40999 cdlemk51 41000 cdlemk52 41001 cdlemk39u 41015 tendoex 41022 dialss 41093 dia0 41099 diaglbN 41102 dia1dim 41108 dia2dimlem2 41112 dia2dimlem3 41113 dia2dimlem10 41120 cdlemm10N 41165 dib1dim 41212 diblss 41217 cdlemn2a 41243 dih1dimb 41287 dihopelvalcpre 41295 dih1 41333 dihmeetlem1N 41337 dihglblem5apreN 41338 dihglbcpreN 41347 dih1dimatlem 41376 |
| Copyright terms: Public domain | W3C validator |