Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcl Structured version   Visualization version   GIF version

Theorem trlcl 40188
Description: Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
trlcl.b 𝐵 = (Base‘𝐾)
trlcl.h 𝐻 = (LHyp‘𝐾)
trlcl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcl.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)

Proof of Theorem trlcl
StepHypRef Expression
1 eqid 2736 . . . . 5 (le‘𝐾) = (le‘𝐾)
2 eqid 2736 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
3 eqid 2736 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
4 trlcl.h . . . . 5 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4lhpocnel 40042 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
65adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
7 eqid 2736 . . . 4 (join‘𝐾) = (join‘𝐾)
8 eqid 2736 . . . 4 (meet‘𝐾) = (meet‘𝐾)
9 trlcl.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trlcl.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
111, 7, 8, 3, 4, 9, 10trlval2 40187 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) → (𝑅𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
126, 11mpd3an3 1464 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
13 hllat 39386 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1413ad2antrr 726 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ Lat)
15 hlop 39385 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
1615ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ OP)
17 trlcl.b . . . . . . 7 𝐵 = (Base‘𝐾)
1817, 4lhpbase 40022 . . . . . 6 (𝑊𝐻𝑊𝐵)
1918ad2antlr 727 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝑊𝐵)
2017, 2opoccl 39217 . . . . 5 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
2116, 19, 20syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
2217, 4, 9ltrncl 40149 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵)
2321, 22mpd3an3 1464 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵)
2417, 7latjcl 18454 . . . 4 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵 ∧ (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵)
2514, 21, 23, 24syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵)
2617, 8latmcl 18455 . . 3 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵𝑊𝐵) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵)
2714, 25, 19, 26syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵)
2812, 27eqeltrd 2835 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  occoc 17284  joincjn 18328  meetcmee 18329  Latclat 18446  OPcops 39195  Atomscatm 39286  HLchlt 39373  LHypclh 40008  LTrncltrn 40125  trLctrl 40182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-lhyp 40012  df-laut 40013  df-ldil 40128  df-ltrn 40129  df-trl 40183
This theorem is referenced by:  trljat1  40190  trljat2  40191  trlval3  40211  cdlemc3  40217  cdlemc5  40219  trlord  40593  cdlemg4c  40636  cdlemg4  40641  cdlemg6c  40644  cdlemg10c  40663  cdlemg10  40665  cdlemg12e  40671  cdlemg17dALTN  40688  cdlemg31a  40721  cdlemg31b  40722  cdlemg35  40737  cdlemg44a  40755  trljco  40764  trljco2  40765  tendoidcl  40793  tendococl  40796  tendoid  40797  tendopltp  40804  tendo0tp  40813  cdlemh1  40839  cdlemh2  40840  cdlemi1  40842  cdlemi  40844  cdlemk9  40863  cdlemk9bN  40864  cdlemkvcl  40866  cdlemk10  40867  cdlemk11  40873  cdlemk11u  40895  cdlemk37  40938  cdlemkfid1N  40945  cdlemkid1  40946  cdlemkid2  40948  cdlemk39s-id  40964  cdlemk48  40974  cdlemk50  40976  cdlemk51  40977  cdlemk52  40978  cdlemk39u  40992  tendoex  40999  dialss  41070  dia0  41076  diaglbN  41079  dia1dim  41085  dia2dimlem2  41089  dia2dimlem3  41090  dia2dimlem10  41097  cdlemm10N  41142  dib1dim  41189  diblss  41194  cdlemn2a  41220  dih1dimb  41264  dihopelvalcpre  41272  dih1  41310  dihmeetlem1N  41314  dihglblem5apreN  41315  dihglbcpreN  41324  dih1dimatlem  41353
  Copyright terms: Public domain W3C validator