Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcl Structured version   Visualization version   GIF version

Theorem trlcl 40166
Description: Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
trlcl.b 𝐵 = (Base‘𝐾)
trlcl.h 𝐻 = (LHyp‘𝐾)
trlcl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcl.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)

Proof of Theorem trlcl
StepHypRef Expression
1 eqid 2737 . . . . 5 (le‘𝐾) = (le‘𝐾)
2 eqid 2737 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
3 eqid 2737 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
4 trlcl.h . . . . 5 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4lhpocnel 40020 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
65adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
7 eqid 2737 . . . 4 (join‘𝐾) = (join‘𝐾)
8 eqid 2737 . . . 4 (meet‘𝐾) = (meet‘𝐾)
9 trlcl.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trlcl.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
111, 7, 8, 3, 4, 9, 10trlval2 40165 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) → (𝑅𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
126, 11mpd3an3 1464 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
13 hllat 39364 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1413ad2antrr 726 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ Lat)
15 hlop 39363 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
1615ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ OP)
17 trlcl.b . . . . . . 7 𝐵 = (Base‘𝐾)
1817, 4lhpbase 40000 . . . . . 6 (𝑊𝐻𝑊𝐵)
1918ad2antlr 727 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝑊𝐵)
2017, 2opoccl 39195 . . . . 5 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
2116, 19, 20syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
2217, 4, 9ltrncl 40127 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵)
2321, 22mpd3an3 1464 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵)
2417, 7latjcl 18484 . . . 4 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵 ∧ (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵)
2514, 21, 23, 24syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵)
2617, 8latmcl 18485 . . 3 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵𝑊𝐵) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵)
2714, 25, 19, 26syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵)
2812, 27eqeltrd 2841 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  occoc 17305  joincjn 18357  meetcmee 18358  Latclat 18476  OPcops 39173  Atomscatm 39264  HLchlt 39351  LHypclh 39986  LTrncltrn 40103  trLctrl 40160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161
This theorem is referenced by:  trljat1  40168  trljat2  40169  trlval3  40189  cdlemc3  40195  cdlemc5  40197  trlord  40571  cdlemg4c  40614  cdlemg4  40619  cdlemg6c  40622  cdlemg10c  40641  cdlemg10  40643  cdlemg12e  40649  cdlemg17dALTN  40666  cdlemg31a  40699  cdlemg31b  40700  cdlemg35  40715  cdlemg44a  40733  trljco  40742  trljco2  40743  tendoidcl  40771  tendococl  40774  tendoid  40775  tendopltp  40782  tendo0tp  40791  cdlemh1  40817  cdlemh2  40818  cdlemi1  40820  cdlemi  40822  cdlemk9  40841  cdlemk9bN  40842  cdlemkvcl  40844  cdlemk10  40845  cdlemk11  40851  cdlemk11u  40873  cdlemk37  40916  cdlemkfid1N  40923  cdlemkid1  40924  cdlemkid2  40926  cdlemk39s-id  40942  cdlemk48  40952  cdlemk50  40954  cdlemk51  40955  cdlemk52  40956  cdlemk39u  40970  tendoex  40977  dialss  41048  dia0  41054  diaglbN  41057  dia1dim  41063  dia2dimlem2  41067  dia2dimlem3  41068  dia2dimlem10  41075  cdlemm10N  41120  dib1dim  41167  diblss  41172  cdlemn2a  41198  dih1dimb  41242  dihopelvalcpre  41250  dih1  41288  dihmeetlem1N  41292  dihglblem5apreN  41293  dihglbcpreN  41302  dih1dimatlem  41331
  Copyright terms: Public domain W3C validator