| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trlcl | Structured version Visualization version GIF version | ||
| Description: Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012.) |
| Ref | Expression |
|---|---|
| trlcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| trlcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| trlcl.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| trlcl.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| trlcl | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | eqid 2736 | . . . . 5 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 3 | eqid 2736 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 4 | trlcl.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | 1, 2, 3, 4 | lhpocnel 40042 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) |
| 6 | 5 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) |
| 7 | eqid 2736 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 8 | eqid 2736 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 9 | trlcl.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 10 | trlcl.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 11 | 1, 7, 8, 3, 4, 9, 10 | trlval2 40187 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
| 12 | 6, 11 | mpd3an3 1464 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
| 13 | hllat 39386 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 14 | 13 | ad2antrr 726 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ Lat) |
| 15 | hlop 39385 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 16 | 15 | ad2antrr 726 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ OP) |
| 17 | trlcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 18 | 17, 4 | lhpbase 40022 | . . . . . 6 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 19 | 18 | ad2antlr 727 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝑊 ∈ 𝐵) |
| 20 | 17, 2 | opoccl 39217 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ 𝐵) → ((oc‘𝐾)‘𝑊) ∈ 𝐵) |
| 21 | 16, 19, 20 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((oc‘𝐾)‘𝑊) ∈ 𝐵) |
| 22 | 17, 4, 9 | ltrncl 40149 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) |
| 23 | 21, 22 | mpd3an3 1464 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) |
| 24 | 17, 7 | latjcl 18454 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵 ∧ (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵) |
| 25 | 14, 21, 23, 24 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵) |
| 26 | 17, 8 | latmcl 18455 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵) |
| 27 | 14, 25, 19, 26 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵) |
| 28 | 12, 27 | eqeltrd 2835 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 lecple 17283 occoc 17284 joincjn 18328 meetcmee 18329 Latclat 18446 OPcops 39195 Atomscatm 39286 HLchlt 39373 LHypclh 40008 LTrncltrn 40125 trLctrl 40182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-oposet 39199 df-ol 39201 df-oml 39202 df-covers 39289 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 df-lhyp 40012 df-laut 40013 df-ldil 40128 df-ltrn 40129 df-trl 40183 |
| This theorem is referenced by: trljat1 40190 trljat2 40191 trlval3 40211 cdlemc3 40217 cdlemc5 40219 trlord 40593 cdlemg4c 40636 cdlemg4 40641 cdlemg6c 40644 cdlemg10c 40663 cdlemg10 40665 cdlemg12e 40671 cdlemg17dALTN 40688 cdlemg31a 40721 cdlemg31b 40722 cdlemg35 40737 cdlemg44a 40755 trljco 40764 trljco2 40765 tendoidcl 40793 tendococl 40796 tendoid 40797 tendopltp 40804 tendo0tp 40813 cdlemh1 40839 cdlemh2 40840 cdlemi1 40842 cdlemi 40844 cdlemk9 40863 cdlemk9bN 40864 cdlemkvcl 40866 cdlemk10 40867 cdlemk11 40873 cdlemk11u 40895 cdlemk37 40938 cdlemkfid1N 40945 cdlemkid1 40946 cdlemkid2 40948 cdlemk39s-id 40964 cdlemk48 40974 cdlemk50 40976 cdlemk51 40977 cdlemk52 40978 cdlemk39u 40992 tendoex 40999 dialss 41070 dia0 41076 diaglbN 41079 dia1dim 41085 dia2dimlem2 41089 dia2dimlem3 41090 dia2dimlem10 41097 cdlemm10N 41142 dib1dim 41189 diblss 41194 cdlemn2a 41220 dih1dimb 41264 dihopelvalcpre 41272 dih1 41310 dihmeetlem1N 41314 dihglblem5apreN 41315 dihglbcpreN 41324 dih1dimatlem 41353 |
| Copyright terms: Public domain | W3C validator |