Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlcl | Structured version Visualization version GIF version |
Description: Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012.) |
Ref | Expression |
---|---|
trlcl.b | ⊢ 𝐵 = (Base‘𝐾) |
trlcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlcl.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlcl.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlcl | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | eqid 2739 | . . . . 5 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
3 | eqid 2739 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
4 | trlcl.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 1, 2, 3, 4 | lhpocnel 38011 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) |
6 | 5 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) |
7 | eqid 2739 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
8 | eqid 2739 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
9 | trlcl.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | trlcl.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
11 | 1, 7, 8, 3, 4, 9, 10 | trlval2 38156 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
12 | 6, 11 | mpd3an3 1460 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
13 | hllat 37356 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
14 | 13 | ad2antrr 722 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ Lat) |
15 | hlop 37355 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
16 | 15 | ad2antrr 722 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ OP) |
17 | trlcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
18 | 17, 4 | lhpbase 37991 | . . . . . 6 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
19 | 18 | ad2antlr 723 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝑊 ∈ 𝐵) |
20 | 17, 2 | opoccl 37187 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ 𝐵) → ((oc‘𝐾)‘𝑊) ∈ 𝐵) |
21 | 16, 19, 20 | syl2anc 583 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((oc‘𝐾)‘𝑊) ∈ 𝐵) |
22 | 17, 4, 9 | ltrncl 38118 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) |
23 | 21, 22 | mpd3an3 1460 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) |
24 | 17, 7 | latjcl 18138 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵 ∧ (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵) |
25 | 14, 21, 23, 24 | syl3anc 1369 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵) |
26 | 17, 8 | latmcl 18139 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵) |
27 | 14, 25, 19, 26 | syl3anc 1369 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵) |
28 | 12, 27 | eqeltrd 2840 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 lecple 16950 occoc 16951 joincjn 18010 meetcmee 18011 Latclat 18130 OPcops 37165 Atomscatm 37256 HLchlt 37343 LHypclh 37977 LTrncltrn 38094 trLctrl 38151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-map 8591 df-proset 17994 df-poset 18012 df-plt 18029 df-lub 18045 df-glb 18046 df-join 18047 df-meet 18048 df-p0 18124 df-p1 18125 df-lat 18131 df-oposet 37169 df-ol 37171 df-oml 37172 df-covers 37259 df-ats 37260 df-atl 37291 df-cvlat 37315 df-hlat 37344 df-lhyp 37981 df-laut 37982 df-ldil 38097 df-ltrn 38098 df-trl 38152 |
This theorem is referenced by: trljat1 38159 trljat2 38160 trlval3 38180 cdlemc3 38186 cdlemc5 38188 trlord 38562 cdlemg4c 38605 cdlemg4 38610 cdlemg6c 38613 cdlemg10c 38632 cdlemg10 38634 cdlemg12e 38640 cdlemg17dALTN 38657 cdlemg31a 38690 cdlemg31b 38691 cdlemg35 38706 cdlemg44a 38724 trljco 38733 trljco2 38734 tendoidcl 38762 tendococl 38765 tendoid 38766 tendopltp 38773 tendo0tp 38782 cdlemh1 38808 cdlemh2 38809 cdlemi1 38811 cdlemi 38813 cdlemk9 38832 cdlemk9bN 38833 cdlemkvcl 38835 cdlemk10 38836 cdlemk11 38842 cdlemk11u 38864 cdlemk37 38907 cdlemkfid1N 38914 cdlemkid1 38915 cdlemkid2 38917 cdlemk39s-id 38933 cdlemk48 38943 cdlemk50 38945 cdlemk51 38946 cdlemk52 38947 cdlemk39u 38961 tendoex 38968 dialss 39039 dia0 39045 diaglbN 39048 dia1dim 39054 dia2dimlem2 39058 dia2dimlem3 39059 dia2dimlem10 39066 cdlemm10N 39111 dib1dim 39158 diblss 39163 cdlemn2a 39189 dih1dimb 39233 dihopelvalcpre 39241 dih1 39279 dihmeetlem1N 39283 dihglblem5apreN 39284 dihglbcpreN 39293 dih1dimatlem 39322 |
Copyright terms: Public domain | W3C validator |