![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlcl | Structured version Visualization version GIF version |
Description: Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012.) |
Ref | Expression |
---|---|
trlcl.b | ⊢ 𝐵 = (Base‘𝐾) |
trlcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlcl.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlcl.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlcl | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | eqid 2740 | . . . . 5 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
3 | eqid 2740 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
4 | trlcl.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 1, 2, 3, 4 | lhpocnel 39975 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) |
6 | 5 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) |
7 | eqid 2740 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
8 | eqid 2740 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
9 | trlcl.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | trlcl.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
11 | 1, 7, 8, 3, 4, 9, 10 | trlval2 40120 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
12 | 6, 11 | mpd3an3 1462 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
13 | hllat 39319 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
14 | 13 | ad2antrr 725 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ Lat) |
15 | hlop 39318 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
16 | 15 | ad2antrr 725 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ OP) |
17 | trlcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
18 | 17, 4 | lhpbase 39955 | . . . . . 6 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
19 | 18 | ad2antlr 726 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝑊 ∈ 𝐵) |
20 | 17, 2 | opoccl 39150 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ 𝐵) → ((oc‘𝐾)‘𝑊) ∈ 𝐵) |
21 | 16, 19, 20 | syl2anc 583 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((oc‘𝐾)‘𝑊) ∈ 𝐵) |
22 | 17, 4, 9 | ltrncl 40082 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) |
23 | 21, 22 | mpd3an3 1462 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) |
24 | 17, 7 | latjcl 18509 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵 ∧ (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵) |
25 | 14, 21, 23, 24 | syl3anc 1371 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵) |
26 | 17, 8 | latmcl 18510 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵) |
27 | 14, 25, 19, 26 | syl3anc 1371 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵) |
28 | 12, 27 | eqeltrd 2844 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 occoc 17319 joincjn 18381 meetcmee 18382 Latclat 18501 OPcops 39128 Atomscatm 39219 HLchlt 39306 LHypclh 39941 LTrncltrn 40058 trLctrl 40115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 |
This theorem is referenced by: trljat1 40123 trljat2 40124 trlval3 40144 cdlemc3 40150 cdlemc5 40152 trlord 40526 cdlemg4c 40569 cdlemg4 40574 cdlemg6c 40577 cdlemg10c 40596 cdlemg10 40598 cdlemg12e 40604 cdlemg17dALTN 40621 cdlemg31a 40654 cdlemg31b 40655 cdlemg35 40670 cdlemg44a 40688 trljco 40697 trljco2 40698 tendoidcl 40726 tendococl 40729 tendoid 40730 tendopltp 40737 tendo0tp 40746 cdlemh1 40772 cdlemh2 40773 cdlemi1 40775 cdlemi 40777 cdlemk9 40796 cdlemk9bN 40797 cdlemkvcl 40799 cdlemk10 40800 cdlemk11 40806 cdlemk11u 40828 cdlemk37 40871 cdlemkfid1N 40878 cdlemkid1 40879 cdlemkid2 40881 cdlemk39s-id 40897 cdlemk48 40907 cdlemk50 40909 cdlemk51 40910 cdlemk52 40911 cdlemk39u 40925 tendoex 40932 dialss 41003 dia0 41009 diaglbN 41012 dia1dim 41018 dia2dimlem2 41022 dia2dimlem3 41023 dia2dimlem10 41030 cdlemm10N 41075 dib1dim 41122 diblss 41127 cdlemn2a 41153 dih1dimb 41197 dihopelvalcpre 41205 dih1 41243 dihmeetlem1N 41247 dihglblem5apreN 41248 dihglbcpreN 41257 dih1dimatlem 41286 |
Copyright terms: Public domain | W3C validator |