Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcl Structured version   Visualization version   GIF version

Theorem trlcl 38157
Description: Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
trlcl.b 𝐵 = (Base‘𝐾)
trlcl.h 𝐻 = (LHyp‘𝐾)
trlcl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcl.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)

Proof of Theorem trlcl
StepHypRef Expression
1 eqid 2739 . . . . 5 (le‘𝐾) = (le‘𝐾)
2 eqid 2739 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
3 eqid 2739 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
4 trlcl.h . . . . 5 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4lhpocnel 38011 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
65adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
7 eqid 2739 . . . 4 (join‘𝐾) = (join‘𝐾)
8 eqid 2739 . . . 4 (meet‘𝐾) = (meet‘𝐾)
9 trlcl.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trlcl.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
111, 7, 8, 3, 4, 9, 10trlval2 38156 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊)) → (𝑅𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
126, 11mpd3an3 1460 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
13 hllat 37356 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1413ad2antrr 722 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ Lat)
15 hlop 37355 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
1615ad2antrr 722 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ OP)
17 trlcl.b . . . . . . 7 𝐵 = (Base‘𝐾)
1817, 4lhpbase 37991 . . . . . 6 (𝑊𝐻𝑊𝐵)
1918ad2antlr 723 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝑊𝐵)
2017, 2opoccl 37187 . . . . 5 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
2116, 19, 20syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
2217, 4, 9ltrncl 38118 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵)
2321, 22mpd3an3 1460 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵)
2417, 7latjcl 18138 . . . 4 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ 𝐵 ∧ (𝐹‘((oc‘𝐾)‘𝑊)) ∈ 𝐵) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵)
2514, 21, 23, 24syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵)
2617, 8latmcl 18139 . . 3 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ 𝐵𝑊𝐵) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵)
2714, 25, 19, 26syl3anc 1369 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ∈ 𝐵)
2812, 27eqeltrd 2840 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2109   class class class wbr 5078  cfv 6430  (class class class)co 7268  Basecbs 16893  lecple 16950  occoc 16951  joincjn 18010  meetcmee 18011  Latclat 18130  OPcops 37165  Atomscatm 37256  HLchlt 37343  LHypclh 37977  LTrncltrn 38094  trLctrl 38151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-map 8591  df-proset 17994  df-poset 18012  df-plt 18029  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-p0 18124  df-p1 18125  df-lat 18131  df-oposet 37169  df-ol 37171  df-oml 37172  df-covers 37259  df-ats 37260  df-atl 37291  df-cvlat 37315  df-hlat 37344  df-lhyp 37981  df-laut 37982  df-ldil 38097  df-ltrn 38098  df-trl 38152
This theorem is referenced by:  trljat1  38159  trljat2  38160  trlval3  38180  cdlemc3  38186  cdlemc5  38188  trlord  38562  cdlemg4c  38605  cdlemg4  38610  cdlemg6c  38613  cdlemg10c  38632  cdlemg10  38634  cdlemg12e  38640  cdlemg17dALTN  38657  cdlemg31a  38690  cdlemg31b  38691  cdlemg35  38706  cdlemg44a  38724  trljco  38733  trljco2  38734  tendoidcl  38762  tendococl  38765  tendoid  38766  tendopltp  38773  tendo0tp  38782  cdlemh1  38808  cdlemh2  38809  cdlemi1  38811  cdlemi  38813  cdlemk9  38832  cdlemk9bN  38833  cdlemkvcl  38835  cdlemk10  38836  cdlemk11  38842  cdlemk11u  38864  cdlemk37  38907  cdlemkfid1N  38914  cdlemkid1  38915  cdlemkid2  38917  cdlemk39s-id  38933  cdlemk48  38943  cdlemk50  38945  cdlemk51  38946  cdlemk52  38947  cdlemk39u  38961  tendoex  38968  dialss  39039  dia0  39045  diaglbN  39048  dia1dim  39054  dia2dimlem2  39058  dia2dimlem3  39059  dia2dimlem10  39066  cdlemm10N  39111  dib1dim  39158  diblss  39163  cdlemn2a  39189  dih1dimb  39233  dihopelvalcpre  39241  dih1  39279  dihmeetlem1N  39283  dihglblem5apreN  39284  dihglbcpreN  39293  dih1dimatlem  39322
  Copyright terms: Public domain W3C validator