Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > logdmss | Structured version Visualization version GIF version |
Description: The continuity domain of log is a subset of the regular domain of log. (Contributed by Mario Carneiro, 1-Mar-2015.) |
Ref | Expression |
---|---|
logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
Ref | Expression |
---|---|
logdmss | ⊢ 𝐷 ⊆ (ℂ ∖ {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logcn.d | . . . . 5 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
2 | 1 | ellogdm 25314 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+))) |
3 | 2 | simplbi 502 | . . 3 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ) |
4 | 1 | logdmn0 25315 | . . 3 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ≠ 0) |
5 | eldifsn 4670 | . . 3 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
6 | 3, 4, 5 | sylanbrc 587 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ (ℂ ∖ {0})) |
7 | 6 | ssriv 3892 | 1 ⊢ 𝐷 ⊆ (ℂ ∖ {0}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 ≠ wne 2949 ∖ cdif 3851 ⊆ wss 3854 {csn 4515 (class class class)co 7143 ℂcc 10558 ℝcr 10559 0cc0 10560 -∞cmnf 10696 ℝ+crp 12415 (,]cioc 12765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-addrcl 10621 ax-rnegex 10631 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-op 4522 df-uni 4792 df-br 5026 df-opab 5088 df-mpt 5106 df-id 5423 df-po 5436 df-so 5437 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-ov 7146 df-oprab 7147 df-mpo 7148 df-er 8292 df-en 8521 df-dom 8522 df-sdom 8523 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-rp 12416 df-ioc 12769 |
This theorem is referenced by: logcn 25322 dvloglem 25323 logf1o2 25325 dvlog 25326 dvlog2 25328 logtayl 25335 dvatan 25605 efrlim 25639 lgamcvg2 25724 |
Copyright terms: Public domain | W3C validator |