| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > logdmss | Structured version Visualization version GIF version | ||
| Description: The continuity domain of log is a subset of the regular domain of log. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| Ref | Expression |
|---|---|
| logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
| Ref | Expression |
|---|---|
| logdmss | ⊢ 𝐷 ⊆ (ℂ ∖ {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | . . . . 5 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
| 2 | 1 | ellogdm 26555 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+))) |
| 3 | 2 | simplbi 497 | . . 3 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ) |
| 4 | 1 | logdmn0 26556 | . . 3 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ≠ 0) |
| 5 | eldifsn 4753 | . . 3 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
| 6 | 3, 4, 5 | sylanbrc 583 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ (ℂ ∖ {0})) |
| 7 | 6 | ssriv 3953 | 1 ⊢ 𝐷 ⊆ (ℂ ∖ {0}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 ⊆ wss 3917 {csn 4592 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 -∞cmnf 11213 ℝ+crp 12958 (,]cioc 13314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-addrcl 11136 ax-rnegex 11146 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-rp 12959 df-ioc 13318 |
| This theorem is referenced by: logcn 26563 dvloglem 26564 logf1o2 26566 dvlog 26567 dvlog2 26569 logtayl 26576 dvatan 26852 efrlim 26886 efrlimOLD 26887 lgamcvg2 26972 readvrec 42357 |
| Copyright terms: Public domain | W3C validator |