MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdmss Structured version   Visualization version   GIF version

Theorem logdmss 25140
Description: The continuity domain of log is a subset of the regular domain of log. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logdmss 𝐷 ⊆ (ℂ ∖ {0})

Proof of Theorem logdmss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 logcn.d . . . . 5 𝐷 = (ℂ ∖ (-∞(,]0))
21ellogdm 25137 . . . 4 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
32simplbi 498 . . 3 (𝑥𝐷𝑥 ∈ ℂ)
41logdmn0 25138 . . 3 (𝑥𝐷𝑥 ≠ 0)
5 eldifsn 4717 . . 3 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
63, 4, 5sylanbrc 583 . 2 (𝑥𝐷𝑥 ∈ (ℂ ∖ {0}))
76ssriv 3974 1 𝐷 ⊆ (ℂ ∖ {0})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  wne 3020  cdif 3936  wss 3939  {csn 4563  (class class class)co 7151  cc 10527  cr 10528  0cc0 10529  -∞cmnf 10665  +crp 12382  (,]cioc 12732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-addrcl 10590  ax-rnegex 10600  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-rp 12383  df-ioc 12736
This theorem is referenced by:  logcn  25145  dvloglem  25146  logf1o2  25148  dvlog  25149  dvlog2  25151  logtayl  25158  dvatan  25428  efrlim  25463  lgamcvg2  25548
  Copyright terms: Public domain W3C validator