| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > logdmss | Structured version Visualization version GIF version | ||
| Description: The continuity domain of log is a subset of the regular domain of log. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| Ref | Expression |
|---|---|
| logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
| Ref | Expression |
|---|---|
| logdmss | ⊢ 𝐷 ⊆ (ℂ ∖ {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | . . . . 5 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
| 2 | 1 | ellogdm 26564 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+))) |
| 3 | 2 | simplbi 497 | . . 3 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ) |
| 4 | 1 | logdmn0 26565 | . . 3 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ≠ 0) |
| 5 | eldifsn 4740 | . . 3 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
| 6 | 3, 4, 5 | sylanbrc 583 | . 2 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ (ℂ ∖ {0})) |
| 7 | 6 | ssriv 3941 | 1 ⊢ 𝐷 ⊆ (ℂ ∖ {0}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3902 ⊆ wss 3905 {csn 4579 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 -∞cmnf 11166 ℝ+crp 12911 (,]cioc 13267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-addrcl 11089 ax-rnegex 11099 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-rp 12912 df-ioc 13271 |
| This theorem is referenced by: logcn 26572 dvloglem 26573 logf1o2 26575 dvlog 26576 dvlog2 26578 logtayl 26585 dvatan 26861 efrlim 26895 efrlimOLD 26896 lgamcvg2 26981 readvrec 42335 |
| Copyright terms: Public domain | W3C validator |