MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdmss Structured version   Visualization version   GIF version

Theorem logdmss 26491
Description: The continuity domain of log is a subset of the regular domain of log. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logdmss 𝐷 ⊆ (ℂ ∖ {0})

Proof of Theorem logdmss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 logcn.d . . . . 5 𝐷 = (ℂ ∖ (-∞(,]0))
21ellogdm 26488 . . . 4 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
32simplbi 497 . . 3 (𝑥𝐷𝑥 ∈ ℂ)
41logdmn0 26489 . . 3 (𝑥𝐷𝑥 ≠ 0)
5 eldifsn 4790 . . 3 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
63, 4, 5sylanbrc 582 . 2 (𝑥𝐷𝑥 ∈ (ℂ ∖ {0}))
76ssriv 3986 1 𝐷 ⊆ (ℂ ∖ {0})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wne 2939  cdif 3945  wss 3948  {csn 4628  (class class class)co 7412  cc 11114  cr 11115  0cc0 11116  -∞cmnf 11253  +crp 12981  (,]cioc 13332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-addrcl 11177  ax-rnegex 11187  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-rp 12982  df-ioc 13336
This theorem is referenced by:  logcn  26496  dvloglem  26497  logf1o2  26499  dvlog  26500  dvlog2  26502  logtayl  26509  dvatan  26782  efrlim  26816  efrlimOLD  26817  lgamcvg2  26902
  Copyright terms: Public domain W3C validator