MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdmss Structured version   Visualization version   GIF version

Theorem logdmss 26558
Description: The continuity domain of log is a subset of the regular domain of log. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logdmss 𝐷 ⊆ (ℂ ∖ {0})

Proof of Theorem logdmss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 logcn.d . . . . 5 𝐷 = (ℂ ∖ (-∞(,]0))
21ellogdm 26555 . . . 4 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
32simplbi 497 . . 3 (𝑥𝐷𝑥 ∈ ℂ)
41logdmn0 26556 . . 3 (𝑥𝐷𝑥 ≠ 0)
5 eldifsn 4753 . . 3 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
63, 4, 5sylanbrc 583 . 2 (𝑥𝐷𝑥 ∈ (ℂ ∖ {0}))
76ssriv 3953 1 𝐷 ⊆ (ℂ ∖ {0})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2926  cdif 3914  wss 3917  {csn 4592  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  -∞cmnf 11213  +crp 12958  (,]cioc 13314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-addrcl 11136  ax-rnegex 11146  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-rp 12959  df-ioc 13318
This theorem is referenced by:  logcn  26563  dvloglem  26564  logf1o2  26566  dvlog  26567  dvlog2  26569  logtayl  26576  dvatan  26852  efrlim  26886  efrlimOLD  26887  lgamcvg2  26972  readvrec  42357
  Copyright terms: Public domain W3C validator