| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > logdmnrp | Structured version Visualization version GIF version | ||
| Description: A number in the continuous domain of log is not a strictly negative number. (Contributed by Mario Carneiro, 18-Feb-2015.) |
| Ref | Expression |
|---|---|
| logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
| Ref | Expression |
|---|---|
| logdmnrp | ⊢ (𝐴 ∈ 𝐷 → ¬ -𝐴 ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifn 4082 | . . 3 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → ¬ 𝐴 ∈ (-∞(,]0)) | |
| 2 | logcn.d | . . 3 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
| 3 | 1, 2 | eleq2s 2849 | . 2 ⊢ (𝐴 ∈ 𝐷 → ¬ 𝐴 ∈ (-∞(,]0)) |
| 4 | rpre 12896 | . . . . 5 ⊢ (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ) | |
| 5 | 2 | ellogdm 26573 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
| 6 | 5 | simplbi 497 | . . . . . 6 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ ℂ) |
| 7 | negreb 11423 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ)) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝐷 → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ)) |
| 9 | 4, 8 | imbitrid 244 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → (-𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ)) |
| 10 | 9 | imp 406 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ) |
| 11 | 10 | mnfltd 13020 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → -∞ < 𝐴) |
| 12 | rpgt0 12900 | . . . . . 6 ⊢ (-𝐴 ∈ ℝ+ → 0 < -𝐴) | |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → 0 < -𝐴) |
| 14 | 10 | lt0neg1d 11683 | . . . . 5 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → (𝐴 < 0 ↔ 0 < -𝐴)) |
| 15 | 13, 14 | mpbird 257 | . . . 4 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 < 0) |
| 16 | 0re 11111 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 17 | ltle 11198 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 → 𝐴 ≤ 0)) | |
| 18 | 10, 16, 17 | sylancl 586 | . . . 4 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → (𝐴 < 0 → 𝐴 ≤ 0)) |
| 19 | 15, 18 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ≤ 0) |
| 20 | mnfxr 11166 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 21 | elioc2 13306 | . . . 4 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0))) | |
| 22 | 20, 16, 21 | mp2an 692 | . . 3 ⊢ (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0)) |
| 23 | 10, 11, 19, 22 | syl3anbrc 1344 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ (-∞(,]0)) |
| 24 | 3, 23 | mtand 815 | 1 ⊢ (𝐴 ∈ 𝐷 → ¬ -𝐴 ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 class class class wbr 5091 (class class class)co 7346 ℂcc 11001 ℝcr 11002 0cc0 11003 -∞cmnf 11141 ℝ*cxr 11142 < clt 11143 ≤ cle 11144 -cneg 11342 ℝ+crp 12887 (,]cioc 13243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-rp 12888 df-ioc 13247 |
| This theorem is referenced by: dvloglem 26582 logf1o2 26584 |
| Copyright terms: Public domain | W3C validator |