![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logdmnrp | Structured version Visualization version GIF version |
Description: A number in the continuous domain of log is not a strictly negative number. (Contributed by Mario Carneiro, 18-Feb-2015.) |
Ref | Expression |
---|---|
logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
Ref | Expression |
---|---|
logdmnrp | ⊢ (𝐴 ∈ 𝐷 → ¬ -𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifn 4124 | . . 3 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → ¬ 𝐴 ∈ (-∞(,]0)) | |
2 | logcn.d | . . 3 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
3 | 1, 2 | eleq2s 2843 | . 2 ⊢ (𝐴 ∈ 𝐷 → ¬ 𝐴 ∈ (-∞(,]0)) |
4 | rpre 13017 | . . . . 5 ⊢ (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ) | |
5 | 2 | ellogdm 26618 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
6 | 5 | simplbi 496 | . . . . . 6 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ ℂ) |
7 | negreb 11557 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ)) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝐷 → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ)) |
9 | 4, 8 | imbitrid 243 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → (-𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ)) |
10 | 9 | imp 405 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ) |
11 | 10 | mnfltd 13139 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → -∞ < 𝐴) |
12 | rpgt0 13021 | . . . . . 6 ⊢ (-𝐴 ∈ ℝ+ → 0 < -𝐴) | |
13 | 12 | adantl 480 | . . . . 5 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → 0 < -𝐴) |
14 | 10 | lt0neg1d 11815 | . . . . 5 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → (𝐴 < 0 ↔ 0 < -𝐴)) |
15 | 13, 14 | mpbird 256 | . . . 4 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 < 0) |
16 | 0re 11248 | . . . . 5 ⊢ 0 ∈ ℝ | |
17 | ltle 11334 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 → 𝐴 ≤ 0)) | |
18 | 10, 16, 17 | sylancl 584 | . . . 4 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → (𝐴 < 0 → 𝐴 ≤ 0)) |
19 | 15, 18 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ≤ 0) |
20 | mnfxr 11303 | . . . 4 ⊢ -∞ ∈ ℝ* | |
21 | elioc2 13422 | . . . 4 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0))) | |
22 | 20, 16, 21 | mp2an 690 | . . 3 ⊢ (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0)) |
23 | 10, 11, 19, 22 | syl3anbrc 1340 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ (-∞(,]0)) |
24 | 3, 23 | mtand 814 | 1 ⊢ (𝐴 ∈ 𝐷 → ¬ -𝐴 ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∖ cdif 3941 class class class wbr 5149 (class class class)co 7419 ℂcc 11138 ℝcr 11139 0cc0 11140 -∞cmnf 11278 ℝ*cxr 11279 < clt 11280 ≤ cle 11281 -cneg 11477 ℝ+crp 13009 (,]cioc 13360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-rp 13010 df-ioc 13364 |
This theorem is referenced by: dvloglem 26627 logf1o2 26629 |
Copyright terms: Public domain | W3C validator |