MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdmnrp Structured version   Visualization version   GIF version

Theorem logdmnrp 25396
Description: A number in the continuous domain of log is not a strictly negative number. (Contributed by Mario Carneiro, 18-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logdmnrp (𝐴𝐷 → ¬ -𝐴 ∈ ℝ+)

Proof of Theorem logdmnrp
StepHypRef Expression
1 eldifn 4028 . . 3 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → ¬ 𝐴 ∈ (-∞(,]0))
2 logcn.d . . 3 𝐷 = (ℂ ∖ (-∞(,]0))
31, 2eleq2s 2852 . 2 (𝐴𝐷 → ¬ 𝐴 ∈ (-∞(,]0))
4 rpre 12492 . . . . 5 (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
52ellogdm 25394 . . . . . . 7 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
65simplbi 501 . . . . . 6 (𝐴𝐷𝐴 ∈ ℂ)
7 negreb 11041 . . . . . 6 (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
86, 7syl 17 . . . . 5 (𝐴𝐷 → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
94, 8syl5ib 247 . . . 4 (𝐴𝐷 → (-𝐴 ∈ ℝ+𝐴 ∈ ℝ))
109imp 410 . . 3 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
1110mnfltd 12614 . . 3 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → -∞ < 𝐴)
12 rpgt0 12496 . . . . . 6 (-𝐴 ∈ ℝ+ → 0 < -𝐴)
1312adantl 485 . . . . 5 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 0 < -𝐴)
1410lt0neg1d 11299 . . . . 5 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → (𝐴 < 0 ↔ 0 < -𝐴))
1513, 14mpbird 260 . . . 4 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 < 0)
16 0re 10733 . . . . 5 0 ∈ ℝ
17 ltle 10819 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 → 𝐴 ≤ 0))
1810, 16, 17sylancl 589 . . . 4 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → (𝐴 < 0 → 𝐴 ≤ 0))
1915, 18mpd 15 . . 3 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ≤ 0)
20 mnfxr 10788 . . . 4 -∞ ∈ ℝ*
21 elioc2 12896 . . . 4 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0)))
2220, 16, 21mp2an 692 . . 3 (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0))
2310, 11, 19, 22syl3anbrc 1344 . 2 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ (-∞(,]0))
243, 23mtand 816 1 (𝐴𝐷 → ¬ -𝐴 ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  cdif 3850   class class class wbr 5040  (class class class)co 7182  cc 10625  cr 10626  0cc0 10627  -∞cmnf 10763  *cxr 10764   < clt 10765  cle 10766  -cneg 10961  +crp 12484  (,]cioc 12834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-po 5452  df-so 5453  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-er 8332  df-en 8568  df-dom 8569  df-sdom 8570  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-rp 12485  df-ioc 12838
This theorem is referenced by:  dvloglem  25403  logf1o2  25405
  Copyright terms: Public domain W3C validator