MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdmnrp Structured version   Visualization version   GIF version

Theorem logdmnrp 25227
Description: A number in the continuous domain of log is not a strictly negative number. (Contributed by Mario Carneiro, 18-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logdmnrp (𝐴𝐷 → ¬ -𝐴 ∈ ℝ+)

Proof of Theorem logdmnrp
StepHypRef Expression
1 eldifn 4107 . . 3 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → ¬ 𝐴 ∈ (-∞(,]0))
2 logcn.d . . 3 𝐷 = (ℂ ∖ (-∞(,]0))
31, 2eleq2s 2934 . 2 (𝐴𝐷 → ¬ 𝐴 ∈ (-∞(,]0))
4 rpre 12400 . . . . 5 (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
52ellogdm 25225 . . . . . . 7 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
65simplbi 500 . . . . . 6 (𝐴𝐷𝐴 ∈ ℂ)
7 negreb 10954 . . . . . 6 (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
86, 7syl 17 . . . . 5 (𝐴𝐷 → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
94, 8syl5ib 246 . . . 4 (𝐴𝐷 → (-𝐴 ∈ ℝ+𝐴 ∈ ℝ))
109imp 409 . . 3 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
1110mnfltd 12522 . . 3 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → -∞ < 𝐴)
12 rpgt0 12404 . . . . . 6 (-𝐴 ∈ ℝ+ → 0 < -𝐴)
1312adantl 484 . . . . 5 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 0 < -𝐴)
1410lt0neg1d 11212 . . . . 5 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → (𝐴 < 0 ↔ 0 < -𝐴))
1513, 14mpbird 259 . . . 4 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 < 0)
16 0re 10646 . . . . 5 0 ∈ ℝ
17 ltle 10732 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 → 𝐴 ≤ 0))
1810, 16, 17sylancl 588 . . . 4 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → (𝐴 < 0 → 𝐴 ≤ 0))
1915, 18mpd 15 . . 3 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ≤ 0)
20 mnfxr 10701 . . . 4 -∞ ∈ ℝ*
21 elioc2 12802 . . . 4 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0)))
2220, 16, 21mp2an 690 . . 3 (𝐴 ∈ (-∞(,]0) ↔ (𝐴 ∈ ℝ ∧ -∞ < 𝐴𝐴 ≤ 0))
2310, 11, 19, 22syl3anbrc 1339 . 2 ((𝐴𝐷 ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ (-∞(,]0))
243, 23mtand 814 1 (𝐴𝐷 → ¬ -𝐴 ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  cdif 3936   class class class wbr 5069  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  -∞cmnf 10676  *cxr 10677   < clt 10678  cle 10679  -cneg 10874  +crp 12392  (,]cioc 12742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-rp 12393  df-ioc 12746
This theorem is referenced by:  dvloglem  25234  logf1o2  25236
  Copyright terms: Public domain W3C validator