MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcnlem2 Structured version   Visualization version   GIF version

Theorem logcnlem2 25798
Description: Lemma for logcn 25802. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypotheses
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
logcnlem.s 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
logcnlem.t 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
logcnlem.a (𝜑𝐴𝐷)
logcnlem.r (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
logcnlem2 (𝜑 → if(𝑆𝑇, 𝑆, 𝑇) ∈ ℝ+)

Proof of Theorem logcnlem2
StepHypRef Expression
1 logcnlem.s . . 3 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
2 simpr 485 . . . 4 ((𝜑𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ+)
3 logcnlem.a . . . . . . . . 9 (𝜑𝐴𝐷)
4 logcn.d . . . . . . . . . . 11 𝐷 = (ℂ ∖ (-∞(,]0))
54ellogdm 25794 . . . . . . . . . 10 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
65simplbi 498 . . . . . . . . 9 (𝐴𝐷𝐴 ∈ ℂ)
73, 6syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
87imcld 14906 . . . . . . 7 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
98adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (ℑ‘𝐴) ∈ ℝ)
109recnd 11003 . . . . 5 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (ℑ‘𝐴) ∈ ℂ)
11 reim0b 14830 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
127, 11syl 17 . . . . . . . 8 (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
135simprbi 497 . . . . . . . . 9 (𝐴𝐷 → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))
143, 13syl 17 . . . . . . . 8 (𝜑 → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))
1512, 14sylbird 259 . . . . . . 7 (𝜑 → ((ℑ‘𝐴) = 0 → 𝐴 ∈ ℝ+))
1615necon3bd 2957 . . . . . 6 (𝜑 → (¬ 𝐴 ∈ ℝ+ → (ℑ‘𝐴) ≠ 0))
1716imp 407 . . . . 5 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (ℑ‘𝐴) ≠ 0)
1810, 17absrpcld 15160 . . . 4 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
192, 18ifclda 4494 . . 3 (𝜑 → if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) ∈ ℝ+)
201, 19eqeltrid 2843 . 2 (𝜑𝑆 ∈ ℝ+)
21 logcnlem.t . . 3 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
224logdmn0 25795 . . . . . 6 (𝐴𝐷𝐴 ≠ 0)
233, 22syl 17 . . . . 5 (𝜑𝐴 ≠ 0)
247, 23absrpcld 15160 . . . 4 (𝜑 → (abs‘𝐴) ∈ ℝ+)
25 logcnlem.r . . . . 5 (𝜑𝑅 ∈ ℝ+)
26 1rp 12734 . . . . . 6 1 ∈ ℝ+
27 rpaddcl 12752 . . . . . 6 ((1 ∈ ℝ+𝑅 ∈ ℝ+) → (1 + 𝑅) ∈ ℝ+)
2826, 25, 27sylancr 587 . . . . 5 (𝜑 → (1 + 𝑅) ∈ ℝ+)
2925, 28rpdivcld 12789 . . . 4 (𝜑 → (𝑅 / (1 + 𝑅)) ∈ ℝ+)
3024, 29rpmulcld 12788 . . 3 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ∈ ℝ+)
3121, 30eqeltrid 2843 . 2 (𝜑𝑇 ∈ ℝ+)
3220, 31ifcld 4505 1 (𝜑 → if(𝑆𝑇, 𝑆, 𝑇) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  cdif 3884  ifcif 4459   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  -∞cmnf 11007  cle 11010   / cdiv 11632  +crp 12730  (,]cioc 13080  cim 14809  abscabs 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ioc 13084  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947
This theorem is referenced by:  logcnlem5  25801
  Copyright terms: Public domain W3C validator