| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > logcnlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for logcn 26593. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| Ref | Expression |
|---|---|
| logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
| logcnlem.s | ⊢ 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) |
| logcnlem.t | ⊢ 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) |
| logcnlem.a | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| logcnlem.r | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| logcnlem2 | ⊢ (𝜑 → if(𝑆 ≤ 𝑇, 𝑆, 𝑇) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcnlem.s | . . 3 ⊢ 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ+) | |
| 3 | logcnlem.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 4 | logcn.d | . . . . . . . . . . 11 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
| 5 | 4 | ellogdm 26585 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
| 6 | 5 | simplbi 497 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ ℂ) |
| 7 | 3, 6 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 8 | 7 | imcld 15112 | . . . . . . 7 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
| 9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (ℑ‘𝐴) ∈ ℝ) |
| 10 | 9 | recnd 11150 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (ℑ‘𝐴) ∈ ℂ) |
| 11 | reim0b 15036 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) | |
| 12 | 7, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) |
| 13 | 5 | simprbi 496 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝐷 → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)) |
| 14 | 3, 13 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)) |
| 15 | 12, 14 | sylbird 260 | . . . . . . 7 ⊢ (𝜑 → ((ℑ‘𝐴) = 0 → 𝐴 ∈ ℝ+)) |
| 16 | 15 | necon3bd 2944 | . . . . . 6 ⊢ (𝜑 → (¬ 𝐴 ∈ ℝ+ → (ℑ‘𝐴) ≠ 0)) |
| 17 | 16 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (ℑ‘𝐴) ≠ 0) |
| 18 | 10, 17 | absrpcld 15368 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (abs‘(ℑ‘𝐴)) ∈ ℝ+) |
| 19 | 2, 18 | ifclda 4512 | . . 3 ⊢ (𝜑 → if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) ∈ ℝ+) |
| 20 | 1, 19 | eqeltrid 2837 | . 2 ⊢ (𝜑 → 𝑆 ∈ ℝ+) |
| 21 | logcnlem.t | . . 3 ⊢ 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) | |
| 22 | 4 | logdmn0 26586 | . . . . . 6 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) |
| 23 | 3, 22 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 24 | 7, 23 | absrpcld 15368 | . . . 4 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ+) |
| 25 | logcnlem.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
| 26 | 1rp 12904 | . . . . . 6 ⊢ 1 ∈ ℝ+ | |
| 27 | rpaddcl 12924 | . . . . . 6 ⊢ ((1 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+) → (1 + 𝑅) ∈ ℝ+) | |
| 28 | 26, 25, 27 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (1 + 𝑅) ∈ ℝ+) |
| 29 | 25, 28 | rpdivcld 12961 | . . . 4 ⊢ (𝜑 → (𝑅 / (1 + 𝑅)) ∈ ℝ+) |
| 30 | 24, 29 | rpmulcld 12960 | . . 3 ⊢ (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ∈ ℝ+) |
| 31 | 21, 30 | eqeltrid 2837 | . 2 ⊢ (𝜑 → 𝑇 ∈ ℝ+) |
| 32 | 20, 31 | ifcld 4523 | 1 ⊢ (𝜑 → if(𝑆 ≤ 𝑇, 𝑆, 𝑇) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∖ cdif 3896 ifcif 4476 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ℂcc 11014 ℝcr 11015 0cc0 11016 1c1 11017 + caddc 11019 · cmul 11021 -∞cmnf 11154 ≤ cle 11157 / cdiv 11784 ℝ+crp 12900 (,]cioc 13256 ℑcim 15015 abscabs 15151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-sup 9336 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-n0 12392 df-z 12479 df-uz 12743 df-rp 12901 df-ioc 13260 df-seq 13919 df-exp 13979 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 |
| This theorem is referenced by: logcnlem5 26592 |
| Copyright terms: Public domain | W3C validator |