Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > logcnlem2 | Structured version Visualization version GIF version |
Description: Lemma for logcn 25707. (Contributed by Mario Carneiro, 25-Feb-2015.) |
Ref | Expression |
---|---|
logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
logcnlem.s | ⊢ 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) |
logcnlem.t | ⊢ 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) |
logcnlem.a | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
logcnlem.r | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
Ref | Expression |
---|---|
logcnlem2 | ⊢ (𝜑 → if(𝑆 ≤ 𝑇, 𝑆, 𝑇) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logcnlem.s | . . 3 ⊢ 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) | |
2 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ+) | |
3 | logcnlem.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
4 | logcn.d | . . . . . . . . . . 11 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
5 | 4 | ellogdm 25699 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
6 | 5 | simplbi 497 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ ℂ) |
7 | 3, 6 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
8 | 7 | imcld 14834 | . . . . . . 7 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (ℑ‘𝐴) ∈ ℝ) |
10 | 9 | recnd 10934 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (ℑ‘𝐴) ∈ ℂ) |
11 | reim0b 14758 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) | |
12 | 7, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) |
13 | 5 | simprbi 496 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝐷 → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)) |
14 | 3, 13 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)) |
15 | 12, 14 | sylbird 259 | . . . . . . 7 ⊢ (𝜑 → ((ℑ‘𝐴) = 0 → 𝐴 ∈ ℝ+)) |
16 | 15 | necon3bd 2956 | . . . . . 6 ⊢ (𝜑 → (¬ 𝐴 ∈ ℝ+ → (ℑ‘𝐴) ≠ 0)) |
17 | 16 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (ℑ‘𝐴) ≠ 0) |
18 | 10, 17 | absrpcld 15088 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (abs‘(ℑ‘𝐴)) ∈ ℝ+) |
19 | 2, 18 | ifclda 4491 | . . 3 ⊢ (𝜑 → if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) ∈ ℝ+) |
20 | 1, 19 | eqeltrid 2843 | . 2 ⊢ (𝜑 → 𝑆 ∈ ℝ+) |
21 | logcnlem.t | . . 3 ⊢ 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) | |
22 | 4 | logdmn0 25700 | . . . . . 6 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) |
23 | 3, 22 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 0) |
24 | 7, 23 | absrpcld 15088 | . . . 4 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ+) |
25 | logcnlem.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
26 | 1rp 12663 | . . . . . 6 ⊢ 1 ∈ ℝ+ | |
27 | rpaddcl 12681 | . . . . . 6 ⊢ ((1 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+) → (1 + 𝑅) ∈ ℝ+) | |
28 | 26, 25, 27 | sylancr 586 | . . . . 5 ⊢ (𝜑 → (1 + 𝑅) ∈ ℝ+) |
29 | 25, 28 | rpdivcld 12718 | . . . 4 ⊢ (𝜑 → (𝑅 / (1 + 𝑅)) ∈ ℝ+) |
30 | 24, 29 | rpmulcld 12717 | . . 3 ⊢ (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ∈ ℝ+) |
31 | 21, 30 | eqeltrid 2843 | . 2 ⊢ (𝜑 → 𝑇 ∈ ℝ+) |
32 | 20, 31 | ifcld 4502 | 1 ⊢ (𝜑 → if(𝑆 ≤ 𝑇, 𝑆, 𝑇) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 ifcif 4456 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 -∞cmnf 10938 ≤ cle 10941 / cdiv 11562 ℝ+crp 12659 (,]cioc 13009 ℑcim 14737 abscabs 14873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ioc 13013 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 |
This theorem is referenced by: logcnlem5 25706 |
Copyright terms: Public domain | W3C validator |