Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcnlem2 Structured version   Visualization version   GIF version

Theorem logcnlem2 25232
 Description: Lemma for logcn 25236. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypotheses
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
logcnlem.s 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
logcnlem.t 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
logcnlem.a (𝜑𝐴𝐷)
logcnlem.r (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
logcnlem2 (𝜑 → if(𝑆𝑇, 𝑆, 𝑇) ∈ ℝ+)

Proof of Theorem logcnlem2
StepHypRef Expression
1 logcnlem.s . . 3 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
2 simpr 488 . . . 4 ((𝜑𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ+)
3 logcnlem.a . . . . . . . . 9 (𝜑𝐴𝐷)
4 logcn.d . . . . . . . . . . 11 𝐷 = (ℂ ∖ (-∞(,]0))
54ellogdm 25228 . . . . . . . . . 10 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
65simplbi 501 . . . . . . . . 9 (𝐴𝐷𝐴 ∈ ℂ)
73, 6syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
87imcld 14552 . . . . . . 7 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
98adantr 484 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (ℑ‘𝐴) ∈ ℝ)
109recnd 10663 . . . . 5 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (ℑ‘𝐴) ∈ ℂ)
11 reim0b 14476 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
127, 11syl 17 . . . . . . . 8 (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
135simprbi 500 . . . . . . . . 9 (𝐴𝐷 → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))
143, 13syl 17 . . . . . . . 8 (𝜑 → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))
1512, 14sylbird 263 . . . . . . 7 (𝜑 → ((ℑ‘𝐴) = 0 → 𝐴 ∈ ℝ+))
1615necon3bd 3028 . . . . . 6 (𝜑 → (¬ 𝐴 ∈ ℝ+ → (ℑ‘𝐴) ≠ 0))
1716imp 410 . . . . 5 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (ℑ‘𝐴) ≠ 0)
1810, 17absrpcld 14806 . . . 4 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
192, 18ifclda 4484 . . 3 (𝜑 → if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) ∈ ℝ+)
201, 19eqeltrid 2920 . 2 (𝜑𝑆 ∈ ℝ+)
21 logcnlem.t . . 3 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
224logdmn0 25229 . . . . . 6 (𝐴𝐷𝐴 ≠ 0)
233, 22syl 17 . . . . 5 (𝜑𝐴 ≠ 0)
247, 23absrpcld 14806 . . . 4 (𝜑 → (abs‘𝐴) ∈ ℝ+)
25 logcnlem.r . . . . 5 (𝜑𝑅 ∈ ℝ+)
26 1rp 12388 . . . . . 6 1 ∈ ℝ+
27 rpaddcl 12406 . . . . . 6 ((1 ∈ ℝ+𝑅 ∈ ℝ+) → (1 + 𝑅) ∈ ℝ+)
2826, 25, 27sylancr 590 . . . . 5 (𝜑 → (1 + 𝑅) ∈ ℝ+)
2925, 28rpdivcld 12443 . . . 4 (𝜑 → (𝑅 / (1 + 𝑅)) ∈ ℝ+)
3024, 29rpmulcld 12442 . . 3 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ∈ ℝ+)
3121, 30eqeltrid 2920 . 2 (𝜑𝑇 ∈ ℝ+)
3220, 31ifcld 4495 1 (𝜑 → if(𝑆𝑇, 𝑆, 𝑇) ∈ ℝ+)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115   ≠ wne 3014   ∖ cdif 3916  ifcif 4450   class class class wbr 5053  ‘cfv 6344  (class class class)co 7146  ℂcc 10529  ℝcr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  -∞cmnf 10667   ≤ cle 10670   / cdiv 11291  ℝ+crp 12384  (,]cioc 12734  ℑcim 14455  abscabs 14591 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8899  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11695  df-3 11696  df-n0 11893  df-z 11977  df-uz 12239  df-rp 12385  df-ioc 12738  df-seq 13372  df-exp 13433  df-cj 14456  df-re 14457  df-im 14458  df-sqrt 14592  df-abs 14593 This theorem is referenced by:  logcnlem5  25235
 Copyright terms: Public domain W3C validator