Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  l1cvat Structured version   Visualization version   GIF version

Theorem l1cvat 36667
Description: Create an atom under an element covered by the lattice unit. Part of proof of Lemma B in [Crawley] p. 112. (1cvrat 37088 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
l1cvat.v 𝑉 = (Base‘𝑊)
l1cvat.s 𝑆 = (LSubSp‘𝑊)
l1cvat.p = (LSSum‘𝑊)
l1cvat.a 𝐴 = (LSAtoms‘𝑊)
l1cvat.c 𝐶 = ( ⋖L𝑊)
l1cvat.w (𝜑𝑊 ∈ LVec)
l1cvat.u (𝜑𝑈𝑆)
l1cvat.q (𝜑𝑄𝐴)
l1cvat.r (𝜑𝑅𝐴)
l1cvat.n (𝜑𝑄𝑅)
l1cvat.l (𝜑𝑈𝐶𝑉)
l1cvat.m (𝜑 → ¬ 𝑄𝑈)
Assertion
Ref Expression
l1cvat (𝜑 → ((𝑄 𝑅) ∩ 𝑈) ∈ 𝐴)

Proof of Theorem l1cvat
StepHypRef Expression
1 l1cvat.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
2 lveclmod 19961 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
4 lmodabl 19764 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
53, 4syl 17 . . . . 5 (𝜑𝑊 ∈ Abel)
6 l1cvat.s . . . . . . . 8 𝑆 = (LSubSp‘𝑊)
76lsssssubg 19813 . . . . . . 7 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
83, 7syl 17 . . . . . 6 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
9 l1cvat.a . . . . . . 7 𝐴 = (LSAtoms‘𝑊)
10 l1cvat.q . . . . . . 7 (𝜑𝑄𝐴)
116, 9, 3, 10lsatlssel 36609 . . . . . 6 (𝜑𝑄𝑆)
128, 11sseldd 3896 . . . . 5 (𝜑𝑄 ∈ (SubGrp‘𝑊))
13 l1cvat.r . . . . . . 7 (𝜑𝑅𝐴)
146, 9, 3, 13lsatlssel 36609 . . . . . 6 (𝜑𝑅𝑆)
158, 14sseldd 3896 . . . . 5 (𝜑𝑅 ∈ (SubGrp‘𝑊))
16 l1cvat.p . . . . . 6 = (LSSum‘𝑊)
1716lsmcom 19061 . . . . 5 ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 𝑅) = (𝑅 𝑄))
185, 12, 15, 17syl3anc 1369 . . . 4 (𝜑 → (𝑄 𝑅) = (𝑅 𝑄))
1918ineq1d 4119 . . 3 (𝜑 → ((𝑄 𝑅) ∩ 𝑈) = ((𝑅 𝑄) ∩ 𝑈))
20 incom 4109 . . 3 ((𝑅 𝑄) ∩ 𝑈) = (𝑈 ∩ (𝑅 𝑄))
2119, 20eqtrdi 2810 . 2 (𝜑 → ((𝑄 𝑅) ∩ 𝑈) = (𝑈 ∩ (𝑅 𝑄)))
22 l1cvat.u . . 3 (𝜑𝑈𝑆)
23 l1cvat.n . . . 4 (𝜑𝑄𝑅)
2423necomd 3007 . . 3 (𝜑𝑅𝑄)
25 l1cvat.m . . 3 (𝜑 → ¬ 𝑄𝑈)
26 l1cvat.v . . . . 5 𝑉 = (Base‘𝑊)
2726, 9, 3, 13lsatssv 36610 . . . 4 (𝜑𝑅𝑉)
28 l1cvat.c . . . . 5 𝐶 = ( ⋖L𝑊)
29 l1cvat.l . . . . 5 (𝜑𝑈𝐶𝑉)
3026, 6, 16, 9, 28, 1, 22, 10, 29, 25l1cvpat 36666 . . . 4 (𝜑 → (𝑈 𝑄) = 𝑉)
3127, 30sseqtrrd 3936 . . 3 (𝜑𝑅 ⊆ (𝑈 𝑄))
326, 16, 9, 1, 22, 13, 10, 24, 25, 31lsatcvat3 36664 . 2 (𝜑 → (𝑈 ∩ (𝑅 𝑄)) ∈ 𝐴)
3321, 32eqeltrd 2853 1 (𝜑 → ((𝑄 𝑅) ∩ 𝑈) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2112  wne 2952  cin 3860  wss 3861   class class class wbr 5037  cfv 6341  (class class class)co 7157  Basecbs 16556  SubGrpcsubg 18355  LSSumclsm 18841  Abelcabl 18989  LModclmod 19717  LSubSpclss 19786  LVecclvec 19957  LSAtomsclsa 36586  L clcv 36630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-iin 4890  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-1st 7700  df-2nd 7701  df-tpos 7909  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-er 8306  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-nn 11689  df-2 11751  df-3 11752  df-ndx 16559  df-slot 16560  df-base 16562  df-sets 16563  df-ress 16564  df-plusg 16651  df-mulr 16652  df-0g 16788  df-mre 16930  df-mrc 16931  df-acs 16933  df-mgm 17933  df-sgrp 17982  df-mnd 17993  df-submnd 18038  df-grp 18187  df-minusg 18188  df-sbg 18189  df-subg 18358  df-cntz 18529  df-oppg 18556  df-lsm 18843  df-cmn 18990  df-abl 18991  df-mgp 19323  df-ur 19335  df-ring 19382  df-oppr 19459  df-dvdsr 19477  df-unit 19478  df-invr 19508  df-drng 19587  df-lmod 19719  df-lss 19787  df-lsp 19827  df-lvec 19958  df-lsatoms 36588  df-lshyp 36589  df-lcv 36631
This theorem is referenced by:  lshpat  36668
  Copyright terms: Public domain W3C validator