Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > l1cvat | Structured version Visualization version GIF version |
Description: Create an atom under an element covered by the lattice unit. Part of proof of Lemma B in [Crawley] p. 112. (1cvrat 37088 analog.) (Contributed by NM, 11-Jan-2015.) |
Ref | Expression |
---|---|
l1cvat.v | ⊢ 𝑉 = (Base‘𝑊) |
l1cvat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
l1cvat.p | ⊢ ⊕ = (LSSum‘𝑊) |
l1cvat.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
l1cvat.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
l1cvat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
l1cvat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
l1cvat.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
l1cvat.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
l1cvat.n | ⊢ (𝜑 → 𝑄 ≠ 𝑅) |
l1cvat.l | ⊢ (𝜑 → 𝑈𝐶𝑉) |
l1cvat.m | ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) |
Ref | Expression |
---|---|
l1cvat | ⊢ (𝜑 → ((𝑄 ⊕ 𝑅) ∩ 𝑈) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | l1cvat.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
2 | lveclmod 19961 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
4 | lmodabl 19764 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Abel) |
6 | l1cvat.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 6 | lsssssubg 19813 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
8 | 3, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
9 | l1cvat.a | . . . . . . 7 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
10 | l1cvat.q | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
11 | 6, 9, 3, 10 | lsatlssel 36609 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
12 | 8, 11 | sseldd 3896 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
13 | l1cvat.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
14 | 6, 9, 3, 13 | lsatlssel 36609 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
15 | 8, 14 | sseldd 3896 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
16 | l1cvat.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑊) | |
17 | 16 | lsmcom 19061 | . . . . 5 ⊢ ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
18 | 5, 12, 15, 17 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
19 | 18 | ineq1d 4119 | . . 3 ⊢ (𝜑 → ((𝑄 ⊕ 𝑅) ∩ 𝑈) = ((𝑅 ⊕ 𝑄) ∩ 𝑈)) |
20 | incom 4109 | . . 3 ⊢ ((𝑅 ⊕ 𝑄) ∩ 𝑈) = (𝑈 ∩ (𝑅 ⊕ 𝑄)) | |
21 | 19, 20 | eqtrdi 2810 | . 2 ⊢ (𝜑 → ((𝑄 ⊕ 𝑅) ∩ 𝑈) = (𝑈 ∩ (𝑅 ⊕ 𝑄))) |
22 | l1cvat.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
23 | l1cvat.n | . . . 4 ⊢ (𝜑 → 𝑄 ≠ 𝑅) | |
24 | 23 | necomd 3007 | . . 3 ⊢ (𝜑 → 𝑅 ≠ 𝑄) |
25 | l1cvat.m | . . 3 ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) | |
26 | l1cvat.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
27 | 26, 9, 3, 13 | lsatssv 36610 | . . . 4 ⊢ (𝜑 → 𝑅 ⊆ 𝑉) |
28 | l1cvat.c | . . . . 5 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
29 | l1cvat.l | . . . . 5 ⊢ (𝜑 → 𝑈𝐶𝑉) | |
30 | 26, 6, 16, 9, 28, 1, 22, 10, 29, 25 | l1cvpat 36666 | . . . 4 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) = 𝑉) |
31 | 27, 30 | sseqtrrd 3936 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑄)) |
32 | 6, 16, 9, 1, 22, 13, 10, 24, 25, 31 | lsatcvat3 36664 | . 2 ⊢ (𝜑 → (𝑈 ∩ (𝑅 ⊕ 𝑄)) ∈ 𝐴) |
33 | 21, 32 | eqeltrd 2853 | 1 ⊢ (𝜑 → ((𝑄 ⊕ 𝑅) ∩ 𝑈) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∩ cin 3860 ⊆ wss 3861 class class class wbr 5037 ‘cfv 6341 (class class class)co 7157 Basecbs 16556 SubGrpcsubg 18355 LSSumclsm 18841 Abelcabl 18989 LModclmod 19717 LSubSpclss 19786 LVecclvec 19957 LSAtomsclsa 36586 ⋖L clcv 36630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-iin 4890 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-1st 7700 df-2nd 7701 df-tpos 7909 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-er 8306 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-nn 11689 df-2 11751 df-3 11752 df-ndx 16559 df-slot 16560 df-base 16562 df-sets 16563 df-ress 16564 df-plusg 16651 df-mulr 16652 df-0g 16788 df-mre 16930 df-mrc 16931 df-acs 16933 df-mgm 17933 df-sgrp 17982 df-mnd 17993 df-submnd 18038 df-grp 18187 df-minusg 18188 df-sbg 18189 df-subg 18358 df-cntz 18529 df-oppg 18556 df-lsm 18843 df-cmn 18990 df-abl 18991 df-mgp 19323 df-ur 19335 df-ring 19382 df-oppr 19459 df-dvdsr 19477 df-unit 19478 df-invr 19508 df-drng 19587 df-lmod 19719 df-lss 19787 df-lsp 19827 df-lvec 19958 df-lsatoms 36588 df-lshyp 36589 df-lcv 36631 |
This theorem is referenced by: lshpat 36668 |
Copyright terms: Public domain | W3C validator |