Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvexchlem3 | Structured version Visualization version GIF version |
Description: Lemma for lcvexch 36827. (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lcvexch.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lcvexch.p | ⊢ ⊕ = (LSSum‘𝑊) |
lcvexch.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lcvexch.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lcvexch.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lcvexch.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lcvexch.q | ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
lcvexch.d | ⊢ (𝜑 → 𝑇 ⊆ 𝑅) |
lcvexch.e | ⊢ (𝜑 → 𝑅 ⊆ (𝑇 ⊕ 𝑈)) |
Ref | Expression |
---|---|
lcvexchlem3 | ⊢ (𝜑 → ((𝑅 ∩ 𝑈) ⊕ 𝑇) = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvexch.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lcvexch.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | 2 | lsssssubg 20028 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
5 | lcvexch.q | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) | |
6 | 4, 5 | sseldd 3919 | . . 3 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
7 | lcvexch.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
8 | 4, 7 | sseldd 3919 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
9 | lcvexch.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
10 | 4, 9 | sseldd 3919 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝑊)) |
11 | lcvexch.d | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑅) | |
12 | lcvexch.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
13 | 12 | lsmmod2 19099 | . . 3 ⊢ (((𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊)) ∧ 𝑇 ⊆ 𝑅) → (𝑅 ∩ (𝑈 ⊕ 𝑇)) = ((𝑅 ∩ 𝑈) ⊕ 𝑇)) |
14 | 6, 8, 10, 11, 13 | syl31anc 1375 | . 2 ⊢ (𝜑 → (𝑅 ∩ (𝑈 ⊕ 𝑇)) = ((𝑅 ∩ 𝑈) ⊕ 𝑇)) |
15 | lcvexch.e | . . . 4 ⊢ (𝜑 → 𝑅 ⊆ (𝑇 ⊕ 𝑈)) | |
16 | lmodabl 19979 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
17 | 1, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Abel) |
18 | 12 | lsmcom 19276 | . . . . 5 ⊢ ((𝑊 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
19 | 17, 10, 8, 18 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
20 | 15, 19 | sseqtrd 3958 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑇)) |
21 | df-ss 3900 | . . 3 ⊢ (𝑅 ⊆ (𝑈 ⊕ 𝑇) ↔ (𝑅 ∩ (𝑈 ⊕ 𝑇)) = 𝑅) | |
22 | 20, 21 | sylib 221 | . 2 ⊢ (𝜑 → (𝑅 ∩ (𝑈 ⊕ 𝑇)) = 𝑅) |
23 | 14, 22 | eqtr3d 2781 | 1 ⊢ (𝜑 → ((𝑅 ∩ 𝑈) ⊕ 𝑇) = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ∩ cin 3882 ⊆ wss 3883 ‘cfv 6401 (class class class)co 7235 SubGrpcsubg 18570 LSSumclsm 19056 Abelcabl 19204 LModclmod 19932 LSubSpclss 20001 ⋖L clcv 36806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-om 7667 df-1st 7783 df-2nd 7784 df-tpos 7992 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-1o 8226 df-er 8415 df-en 8651 df-dom 8652 df-sdom 8653 df-fin 8654 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-nn 11861 df-2 11923 df-sets 16750 df-slot 16768 df-ndx 16778 df-base 16794 df-ress 16818 df-plusg 16848 df-0g 16979 df-mre 17122 df-mrc 17123 df-acs 17125 df-mgm 18147 df-sgrp 18196 df-mnd 18207 df-submnd 18252 df-grp 18401 df-minusg 18402 df-sbg 18403 df-subg 18573 df-oppg 18771 df-lsm 19058 df-cmn 19205 df-abl 19206 df-mgp 19538 df-ur 19550 df-ring 19597 df-lmod 19934 df-lss 20002 |
This theorem is referenced by: lcvexchlem5 36826 |
Copyright terms: Public domain | W3C validator |