Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvexchlem3 Structured version   Visualization version   GIF version

Theorem lcvexchlem3 36824
Description: Lemma for lcvexch 36827. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvexch.s 𝑆 = (LSubSp‘𝑊)
lcvexch.p = (LSSum‘𝑊)
lcvexch.c 𝐶 = ( ⋖L𝑊)
lcvexch.w (𝜑𝑊 ∈ LMod)
lcvexch.t (𝜑𝑇𝑆)
lcvexch.u (𝜑𝑈𝑆)
lcvexch.q (𝜑𝑅𝑆)
lcvexch.d (𝜑𝑇𝑅)
lcvexch.e (𝜑𝑅 ⊆ (𝑇 𝑈))
Assertion
Ref Expression
lcvexchlem3 (𝜑 → ((𝑅𝑈) 𝑇) = 𝑅)

Proof of Theorem lcvexchlem3
StepHypRef Expression
1 lcvexch.w . . . . 5 (𝜑𝑊 ∈ LMod)
2 lcvexch.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
32lsssssubg 20028 . . . . 5 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
41, 3syl 17 . . . 4 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
5 lcvexch.q . . . 4 (𝜑𝑅𝑆)
64, 5sseldd 3919 . . 3 (𝜑𝑅 ∈ (SubGrp‘𝑊))
7 lcvexch.u . . . 4 (𝜑𝑈𝑆)
84, 7sseldd 3919 . . 3 (𝜑𝑈 ∈ (SubGrp‘𝑊))
9 lcvexch.t . . . 4 (𝜑𝑇𝑆)
104, 9sseldd 3919 . . 3 (𝜑𝑇 ∈ (SubGrp‘𝑊))
11 lcvexch.d . . 3 (𝜑𝑇𝑅)
12 lcvexch.p . . . 4 = (LSSum‘𝑊)
1312lsmmod2 19099 . . 3 (((𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊)) ∧ 𝑇𝑅) → (𝑅 ∩ (𝑈 𝑇)) = ((𝑅𝑈) 𝑇))
146, 8, 10, 11, 13syl31anc 1375 . 2 (𝜑 → (𝑅 ∩ (𝑈 𝑇)) = ((𝑅𝑈) 𝑇))
15 lcvexch.e . . . 4 (𝜑𝑅 ⊆ (𝑇 𝑈))
16 lmodabl 19979 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
171, 16syl 17 . . . . 5 (𝜑𝑊 ∈ Abel)
1812lsmcom 19276 . . . . 5 ((𝑊 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 𝑈) = (𝑈 𝑇))
1917, 10, 8, 18syl3anc 1373 . . . 4 (𝜑 → (𝑇 𝑈) = (𝑈 𝑇))
2015, 19sseqtrd 3958 . . 3 (𝜑𝑅 ⊆ (𝑈 𝑇))
21 df-ss 3900 . . 3 (𝑅 ⊆ (𝑈 𝑇) ↔ (𝑅 ∩ (𝑈 𝑇)) = 𝑅)
2220, 21sylib 221 . 2 (𝜑 → (𝑅 ∩ (𝑈 𝑇)) = 𝑅)
2314, 22eqtr3d 2781 1 (𝜑 → ((𝑅𝑈) 𝑇) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  cin 3882  wss 3883  cfv 6401  (class class class)co 7235  SubGrpcsubg 18570  LSSumclsm 19056  Abelcabl 19204  LModclmod 19932  LSubSpclss 20001  L clcv 36806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5196  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545  ax-cnex 10815  ax-resscn 10816  ax-1cn 10817  ax-icn 10818  ax-addcl 10819  ax-addrcl 10820  ax-mulcl 10821  ax-mulrcl 10822  ax-mulcom 10823  ax-addass 10824  ax-mulass 10825  ax-distr 10826  ax-i2m1 10827  ax-1ne0 10828  ax-1rid 10829  ax-rnegex 10830  ax-rrecex 10831  ax-cnre 10832  ax-pre-lttri 10833  ax-pre-lttrn 10834  ax-pre-ltadd 10835  ax-pre-mulgt0 10836
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-pred 6179  df-ord 6237  df-on 6238  df-lim 6239  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-riota 7192  df-ov 7238  df-oprab 7239  df-mpo 7240  df-om 7667  df-1st 7783  df-2nd 7784  df-tpos 7992  df-wrecs 8071  df-recs 8132  df-rdg 8170  df-1o 8226  df-er 8415  df-en 8651  df-dom 8652  df-sdom 8653  df-fin 8654  df-pnf 10899  df-mnf 10900  df-xr 10901  df-ltxr 10902  df-le 10903  df-sub 11094  df-neg 11095  df-nn 11861  df-2 11923  df-sets 16750  df-slot 16768  df-ndx 16778  df-base 16794  df-ress 16818  df-plusg 16848  df-0g 16979  df-mre 17122  df-mrc 17123  df-acs 17125  df-mgm 18147  df-sgrp 18196  df-mnd 18207  df-submnd 18252  df-grp 18401  df-minusg 18402  df-sbg 18403  df-subg 18573  df-oppg 18771  df-lsm 19058  df-cmn 19205  df-abl 19206  df-mgp 19538  df-ur 19550  df-ring 19597  df-lmod 19934  df-lss 20002
This theorem is referenced by:  lcvexchlem5  36826
  Copyright terms: Public domain W3C validator