![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2b | Structured version Visualization version GIF version |
Description: Lemma for lclkr 38151. (Contributed by NM, 17-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkrlem2a.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkrlem2a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkrlem2a.v | ⊢ 𝑉 = (Base‘𝑈) |
lclkrlem2a.z | ⊢ 0 = (0g‘𝑈) |
lclkrlem2a.p | ⊢ ⊕ = (LSSum‘𝑈) |
lclkrlem2a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lclkrlem2a.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lclkrlem2a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lclkrlem2a.b | ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) |
lclkrlem2a.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lclkrlem2a.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lclkrlem2a.e | ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ ( ⊥ ‘{𝑌})) |
lclkrlem2b.da | ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) |
Ref | Expression |
---|---|
lclkrlem2b | ⊢ (𝜑 → (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘{𝐵})) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2a.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lclkrlem2a.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lclkrlem2a.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | lclkrlem2a.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lclkrlem2a.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
6 | lclkrlem2a.p | . . 3 ⊢ ⊕ = (LSSum‘𝑈) | |
7 | lclkrlem2a.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
8 | lclkrlem2a.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
9 | lclkrlem2a.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | 9 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{𝐵})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
11 | lclkrlem2a.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) | |
12 | 11 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{𝐵})) → 𝐵 ∈ (𝑉 ∖ { 0 })) |
13 | lclkrlem2a.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
14 | 13 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{𝐵})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
15 | lclkrlem2a.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
16 | 15 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{𝐵})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
17 | lclkrlem2a.e | . . . 4 ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ ( ⊥ ‘{𝑌})) | |
18 | 17 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{𝐵})) → ( ⊥ ‘{𝑋}) ≠ ( ⊥ ‘{𝑌})) |
19 | simpr 477 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{𝐵})) → ¬ 𝑋 ∈ ( ⊥ ‘{𝐵})) | |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 19 | lclkrlem2a 38125 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{𝐵})) → (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘{𝐵})) ∈ 𝐴) |
21 | 1, 3, 9 | dvhlmod 37728 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ LMod) |
22 | lmodabl 19415 | . . . . . . 7 ⊢ (𝑈 ∈ LMod → 𝑈 ∈ Abel) | |
23 | 21, 22 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ Abel) |
24 | eqid 2771 | . . . . . . . . 9 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
25 | 24 | lsssssubg 19464 | . . . . . . . 8 ⊢ (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) |
26 | 21, 25 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) |
27 | 13 | eldifad 3834 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
28 | 4, 24, 7 | lspsncl 19483 | . . . . . . . 8 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
29 | 21, 27, 28 | syl2anc 576 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
30 | 26, 29 | sseldd 3852 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑈)) |
31 | 15 | eldifad 3834 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
32 | 4, 24, 7 | lspsncl 19483 | . . . . . . . 8 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
33 | 21, 31, 32 | syl2anc 576 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
34 | 26, 33 | sseldd 3852 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑈)) |
35 | 6 | lsmcom 18746 | . . . . . 6 ⊢ ((𝑈 ∈ Abel ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑈)) → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) = ((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑋}))) |
36 | 23, 30, 34, 35 | syl3anc 1352 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) = ((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑋}))) |
37 | 36 | ineq1d 4069 | . . . 4 ⊢ (𝜑 → (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘{𝐵})) = (((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑋})) ∩ ( ⊥ ‘{𝐵}))) |
38 | 37 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵})) → (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘{𝐵})) = (((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑋})) ∩ ( ⊥ ‘{𝐵}))) |
39 | 9 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
40 | 11 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵})) → 𝐵 ∈ (𝑉 ∖ { 0 })) |
41 | 15 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
42 | 13 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
43 | 17 | necomd 3015 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘{𝑌}) ≠ ( ⊥ ‘{𝑋})) |
44 | 43 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵})) → ( ⊥ ‘{𝑌}) ≠ ( ⊥ ‘{𝑋})) |
45 | simpr 477 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵})) → ¬ 𝑌 ∈ ( ⊥ ‘{𝐵})) | |
46 | 1, 2, 3, 4, 5, 6, 7, 8, 39, 40, 41, 42, 44, 45 | lclkrlem2a 38125 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵})) → (((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑋})) ∩ ( ⊥ ‘{𝐵})) ∈ 𝐴) |
47 | 38, 46 | eqeltrd 2859 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵})) → (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘{𝐵})) ∈ 𝐴) |
48 | lclkrlem2b.da | . 2 ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) | |
49 | 20, 47, 48 | mpjaodan 942 | 1 ⊢ (𝜑 → (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘{𝐵})) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 ∨ wo 834 = wceq 1508 ∈ wcel 2051 ≠ wne 2960 ∖ cdif 3819 ∩ cin 3821 ⊆ wss 3822 {csn 4435 ‘cfv 6185 (class class class)co 6974 Basecbs 16337 0gc0g 16567 SubGrpcsubg 18069 LSSumclsm 18532 Abelcabl 18679 LModclmod 19368 LSubSpclss 19437 LSpanclspn 19477 LSAtomsclsa 35592 HLchlt 35968 LHypclh 36602 DVecHcdvh 37696 ocHcoch 37965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-riotaBAD 35571 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-iin 4791 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-tpos 7693 df-undef 7740 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-oadd 7907 df-er 8087 df-map 8206 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-5 11504 df-6 11505 df-n0 11706 df-z 11792 df-uz 12057 df-fz 12707 df-struct 16339 df-ndx 16340 df-slot 16341 df-base 16343 df-sets 16344 df-ress 16345 df-plusg 16432 df-mulr 16433 df-sca 16435 df-vsca 16436 df-0g 16569 df-mre 16727 df-mrc 16728 df-acs 16730 df-proset 17408 df-poset 17426 df-plt 17438 df-lub 17454 df-glb 17455 df-join 17456 df-meet 17457 df-p0 17519 df-p1 17520 df-lat 17526 df-clat 17588 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-submnd 17816 df-grp 17906 df-minusg 17907 df-sbg 17908 df-subg 18072 df-cntz 18230 df-oppg 18257 df-lsm 18534 df-cmn 18680 df-abl 18681 df-mgp 18975 df-ur 18987 df-ring 19034 df-oppr 19108 df-dvdsr 19126 df-unit 19127 df-invr 19157 df-dvr 19168 df-drng 19239 df-lmod 19370 df-lss 19438 df-lsp 19478 df-lvec 19609 df-lsatoms 35594 df-lshyp 35595 df-lcv 35637 df-oposet 35794 df-ol 35796 df-oml 35797 df-covers 35884 df-ats 35885 df-atl 35916 df-cvlat 35940 df-hlat 35969 df-llines 36116 df-lplanes 36117 df-lvols 36118 df-lines 36119 df-psubsp 36121 df-pmap 36122 df-padd 36414 df-lhyp 36606 df-laut 36607 df-ldil 36722 df-ltrn 36723 df-trl 36777 df-tgrp 37361 df-tendo 37373 df-edring 37375 df-dveca 37621 df-disoa 37647 df-dvech 37697 df-dib 37757 df-dic 37791 df-dih 37847 df-doch 37966 df-djh 38013 |
This theorem is referenced by: lclkrlem2c 38127 |
Copyright terms: Public domain | W3C validator |