![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsubcom23d | Structured version Visualization version GIF version |
Description: Swap the second and third variables in an equation with subtraction on the left, converting it into an addition. (Contributed by SN, 23-Aug-2024.) |
Ref | Expression |
---|---|
lsubcom23d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
lsubcom23d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
lsubcom23d.1 | ⊢ (𝜑 → (𝐴 − 𝐵) = 𝐶) |
Ref | Expression |
---|---|
lsubcom23d | ⊢ (𝜑 → (𝐴 − 𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsubcom23d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | lsubcom23d.1 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) = 𝐶) | |
3 | lsubcom23d.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | 1, 3 | subcld 11568 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
5 | 2, 4 | eqeltrrd 2826 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
6 | 1, 5 | subcld 11568 | . 2 ⊢ (𝜑 → (𝐴 − 𝐶) ∈ ℂ) |
7 | 4, 2 | subeq0bd 11637 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) − 𝐶) = 0) |
8 | 1, 5, 3 | sub32d 11600 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐶) − 𝐵) = ((𝐴 − 𝐵) − 𝐶)) |
9 | 3 | subidd 11556 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐵) = 0) |
10 | 7, 8, 9 | 3eqtr4d 2774 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐶) − 𝐵) = (𝐵 − 𝐵)) |
11 | 6, 3, 3, 10 | subcan2d 11610 | 1 ⊢ (𝜑 → (𝐴 − 𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 (class class class)co 7401 ℂcc 11104 0cc0 11106 − cmin 11441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-ltxr 11250 df-sub 11443 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |