| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sub32d | Structured version Visualization version GIF version | ||
| Description: Swap the second and third terms in a double subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| sub32d | ⊢ (𝜑 → ((𝐴 − 𝐵) − 𝐶) = ((𝐴 − 𝐶) − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | sub32 11402 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − 𝐶) = ((𝐴 − 𝐶) − 𝐵)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) − 𝐶) = ((𝐴 − 𝐶) − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 − cmin 11351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-sub 11353 |
| This theorem is referenced by: subsubadd23 11531 mulsubaddmulsub 11588 hashfzo 14338 lswccatn0lsw 14501 revccat 14675 repswrevw 14696 isercolllem1 15574 iseralt 15594 pwdif 15777 prmdiv 16698 fldivp1 16811 chnccat 18534 chnrev 18535 efgredleme 19657 cphipval 25171 dvexp3 25910 dvfsumlem2 25961 dvfsumlem2OLD 25962 isosctrlem2 26757 harmonicbnd4 26949 logfacrlim 27163 logexprlim 27164 lgsquadlem1 27319 rpvmasumlem 27426 dchrisumlem1 27428 mulog2sumlem3 27475 vmalogdivsum 27478 selberg2lem 27489 selberg2 27490 selberg4 27500 brbtwn2 28885 colinearalglem2 28887 colinearalglem4 28889 ipval2 30689 cycpmco2lem5 33106 constrrtcc 33769 revpfxsfxrev 35181 revwlk 35190 bj-bary1lem 37375 fltnltalem 42780 jm3.1lem1 43134 jm3.1lem2 43135 fourierdlem42 46271 fourierdlem89 46317 fourierdlem90 46318 fourierdlem91 46319 sigarperm 46982 m1modmmod 47482 eenglngeehlnmlem2 48863 2itscplem3 48905 |
| Copyright terms: Public domain | W3C validator |