MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sub32d Structured version   Visualization version   GIF version

Theorem sub32d 11007
Description: Swap the second and third terms in a double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
sub32d (𝜑 → ((𝐴𝐵) − 𝐶) = ((𝐴𝐶) − 𝐵))

Proof of Theorem sub32d
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 sub32 10898 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) − 𝐶) = ((𝐴𝐶) − 𝐵))
51, 2, 3, 4syl3anc 1367 1 (𝜑 → ((𝐴𝐵) − 𝐶) = ((𝐴𝐶) − 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  (class class class)co 7133  cc 10513  cmin 10848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-po 5450  df-so 5451  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-ltxr 10658  df-sub 10850
This theorem is referenced by:  mulsubaddmulsub  11082  hashfzo  13775  lswccatn0lsw  13925  revccat  14108  repswrevw  14129  isercolllem1  15001  iseralt  15021  pwdif  15203  prmdiv  16100  fldivp1  16211  efgredleme  18848  cphipval  23826  dvexp3  24560  dvfsumlem2  24609  isosctrlem2  25384  harmonicbnd4  25575  logfacrlim  25787  logexprlim  25788  lgsquadlem1  25943  rpvmasumlem  26050  dchrisumlem1  26052  mulog2sumlem3  26099  vmalogdivsum  26102  selberg2lem  26113  selberg2  26114  selberg4  26124  brbtwn2  26678  colinearalglem2  26680  colinearalglem4  26682  ipval2  28469  cycpmco2lem5  30780  revpfxsfxrev  32370  revwlk  32379  bj-bary1lem  34608  fltnltalem  39411  jm3.1lem1  39751  jm3.1lem2  39752  fourierdlem42  42582  fourierdlem89  42628  fourierdlem90  42629  fourierdlem91  42630  sigarperm  43265  m1modmmod  44726  eenglngeehlnmlem2  44912  2itscplem3  44954
  Copyright terms: Public domain W3C validator