MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sub32d Structured version   Visualization version   GIF version

Theorem sub32d 11294
Description: Swap the second and third terms in a double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
sub32d (𝜑 → ((𝐴𝐵) − 𝐶) = ((𝐴𝐶) − 𝐵))

Proof of Theorem sub32d
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 sub32 11185 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) − 𝐶) = ((𝐴𝐶) − 𝐵))
51, 2, 3, 4syl3anc 1369 1 (𝜑 → ((𝐴𝐵) − 𝐶) = ((𝐴𝐶) − 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  (class class class)co 7255  cc 10800  cmin 11135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137
This theorem is referenced by:  mulsubaddmulsub  11369  hashfzo  14072  lswccatn0lsw  14224  revccat  14407  repswrevw  14428  isercolllem1  15304  iseralt  15324  pwdif  15508  prmdiv  16414  fldivp1  16526  efgredleme  19264  cphipval  24312  dvexp3  25047  dvfsumlem2  25096  isosctrlem2  25874  harmonicbnd4  26065  logfacrlim  26277  logexprlim  26278  lgsquadlem1  26433  rpvmasumlem  26540  dchrisumlem1  26542  mulog2sumlem3  26589  vmalogdivsum  26592  selberg2lem  26603  selberg2  26604  selberg4  26614  brbtwn2  27176  colinearalglem2  27178  colinearalglem4  27180  ipval2  28970  cycpmco2lem5  31299  revpfxsfxrev  32977  revwlk  32986  bj-bary1lem  35408  lsubcom23d  40228  fltnltalem  40415  jm3.1lem1  40755  jm3.1lem2  40756  fourierdlem42  43580  fourierdlem89  43626  fourierdlem90  43627  fourierdlem91  43628  sigarperm  44263  m1modmmod  45755  eenglngeehlnmlem2  45972  2itscplem3  46014
  Copyright terms: Public domain W3C validator