MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subeq0bd Structured version   Visualization version   GIF version

Theorem subeq0bd 11663
Description: If two complex numbers are equal, their difference is zero. Consequence of subeq0ad 11604. Converse of subeq0d 11602. Contrapositive of subne0ad 11605. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
subeq0bd.1 (𝜑𝐴 ∈ ℂ)
subeq0bd.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
subeq0bd (𝜑 → (𝐴𝐵) = 0)

Proof of Theorem subeq0bd
StepHypRef Expression
1 subeq0bd.2 . 2 (𝜑𝐴 = 𝐵)
2 subeq0bd.1 . . 3 (𝜑𝐴 ∈ ℂ)
31, 2eqeltrrd 2835 . . 3 (𝜑𝐵 ∈ ℂ)
42, 3subeq0ad 11604 . 2 (𝜑 → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
51, 4mpbird 257 1 (𝜑 → (𝐴𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  (class class class)co 7405  cc 11127  0cc0 11129  cmin 11466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-sub 11468
This theorem is referenced by:  sylow1lem1  19579  rrxmvallem  25356  rrxmetlem  25359  dv11cn  25958  coeeulem  26181  plyexmo  26273  chordthmlem3  26796  atantayl2  26900  2sqmod  27399  addsq2nreurex  27407  axcontlem2  28944  ipasslem8  30818  ccatws1f1o  32927  constrrtlc1  33766  constrrtlc2  33767  constrrtcc  33769  bj-subcom  37326  int-addsimpd  44199  bcc0  44364  dvbdfbdioolem2  45958  volioc  46001  etransclem14  46277  etransclem35  46298  ovolval2lem  46672  sharhght  46894  itschlc0yqe  48740
  Copyright terms: Public domain W3C validator