![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subeq0bd | Structured version Visualization version GIF version |
Description: If two complex numbers are equal, their difference is zero. Consequence of subeq0ad 11627. Converse of subeq0d 11625. Contrapositive of subne0ad 11628. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
subeq0bd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
subeq0bd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
subeq0bd | ⊢ (𝜑 → (𝐴 − 𝐵) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subeq0bd.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | subeq0bd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | 1, 2 | eqeltrrd 2839 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
4 | 2, 3 | subeq0ad 11627 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 0cc0 11152 − cmin 11489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 df-sub 11491 |
This theorem is referenced by: sylow1lem1 19630 rrxmvallem 25451 rrxmetlem 25454 dv11cn 26054 coeeulem 26277 plyexmo 26369 chordthmlem3 26891 atantayl2 26995 2sqmod 27494 addsq2nreurex 27502 axcontlem2 28994 ipasslem8 30865 ccatws1f1o 32920 constrrtlc1 33737 constrrtlc2 33738 constrrtcc 33740 bj-subcom 37290 lsubswap23d 42292 int-addsimpd 44164 bcc0 44335 dvbdfbdioolem2 45884 volioc 45927 etransclem14 46203 etransclem35 46224 ovolval2lem 46598 sharhght 46820 itschlc0yqe 48609 |
Copyright terms: Public domain | W3C validator |