| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subeq0bd | Structured version Visualization version GIF version | ||
| Description: If two complex numbers are equal, their difference is zero. Consequence of subeq0ad 11482. Converse of subeq0d 11480. Contrapositive of subne0ad 11483. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| subeq0bd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| subeq0bd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| subeq0bd | ⊢ (𝜑 → (𝐴 − 𝐵) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subeq0bd.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | subeq0bd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | 1, 2 | eqeltrrd 2832 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 4 | 2, 3 | subeq0ad 11482 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 0cc0 11006 − cmin 11344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 |
| This theorem is referenced by: sylow1lem1 19510 rrxmvallem 25331 rrxmetlem 25334 dv11cn 25933 coeeulem 26156 plyexmo 26248 chordthmlem3 26771 atantayl2 26875 2sqmod 27374 addsq2nreurex 27382 axcontlem2 28943 ipasslem8 30817 ccatws1f1o 32932 constrrtlc1 33745 constrrtlc2 33746 constrrtcc 33748 bj-subcom 37352 int-addsimpd 44278 bcc0 44443 dvbdfbdioolem2 46037 volioc 46080 etransclem14 46356 etransclem35 46377 ovolval2lem 46751 sharhght 46973 itschlc0yqe 48871 |
| Copyright terms: Public domain | W3C validator |