MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  le2add Structured version   Visualization version   GIF version

Theorem le2add 11596
Description: Adding both sides of two 'less than or equal to' relations. (Contributed by NM, 17-Apr-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
le2add (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)))

Proof of Theorem le2add
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ)
2 simprl 770 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℝ)
3 simplr 768 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℝ)
4 leadd1 11582 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐶 ↔ (𝐴 + 𝐵) ≤ (𝐶 + 𝐵)))
51, 2, 3, 4syl3anc 1373 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴𝐶 ↔ (𝐴 + 𝐵) ≤ (𝐶 + 𝐵)))
6 simprr 772 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ)
7 leadd2 11583 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐷 ↔ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)))
83, 6, 2, 7syl3anc 1373 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵𝐷 ↔ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)))
95, 8anbi12d 632 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵𝐷) ↔ ((𝐴 + 𝐵) ≤ (𝐶 + 𝐵) ∧ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷))))
101, 3readdcld 11138 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 + 𝐵) ∈ ℝ)
112, 3readdcld 11138 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 + 𝐵) ∈ ℝ)
122, 6readdcld 11138 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 + 𝐷) ∈ ℝ)
13 letr 11204 . . 3 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐷) ∈ ℝ) → (((𝐴 + 𝐵) ≤ (𝐶 + 𝐵) ∧ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)))
1410, 11, 12, 13syl3anc 1373 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴 + 𝐵) ≤ (𝐶 + 𝐵) ∧ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)))
159, 14sylbid 240 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111   class class class wbr 5091  (class class class)co 7346  cr 11002   + caddc 11006  cle 11144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149
This theorem is referenced by:  addge0  11603  le2addi  11677  fzadd2  13456  swrdccatin2  14633  cshwcsh2id  14732  01sqrexlem7  15152  lo1add  15531  climcndslem1  15753  climcndslem2  15754  mdegmullem  26008  mumullem2  27115  pntrsumbnd2  27503  pntlemf  27541  crctcshwlkn0  29797  ubthlem2  30846  nmoptrii  32069  cdj3i  32416  itg2addnc  37713  jm2.26lem3  43033  gbegt5  47791  gbowgt5  47792  gboge9  47794
  Copyright terms: Public domain W3C validator