MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  le2add Structured version   Visualization version   GIF version

Theorem le2add 11711
Description: Adding both sides of two 'less than or equal to' relations. (Contributed by NM, 17-Apr-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
le2add (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)))

Proof of Theorem le2add
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ)
2 simprl 770 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℝ)
3 simplr 768 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℝ)
4 leadd1 11697 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐶 ↔ (𝐴 + 𝐵) ≤ (𝐶 + 𝐵)))
51, 2, 3, 4syl3anc 1372 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴𝐶 ↔ (𝐴 + 𝐵) ≤ (𝐶 + 𝐵)))
6 simprr 772 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ)
7 leadd2 11698 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐷 ↔ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)))
83, 6, 2, 7syl3anc 1372 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵𝐷 ↔ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)))
95, 8anbi12d 632 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵𝐷) ↔ ((𝐴 + 𝐵) ≤ (𝐶 + 𝐵) ∧ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷))))
101, 3readdcld 11256 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 + 𝐵) ∈ ℝ)
112, 3readdcld 11256 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 + 𝐵) ∈ ℝ)
122, 6readdcld 11256 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 + 𝐷) ∈ ℝ)
13 letr 11321 . . 3 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐷) ∈ ℝ) → (((𝐴 + 𝐵) ≤ (𝐶 + 𝐵) ∧ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)))
1410, 11, 12, 13syl3anc 1372 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴 + 𝐵) ≤ (𝐶 + 𝐵) ∧ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)))
159, 14sylbid 240 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107   class class class wbr 5116  (class class class)co 7399  cr 11120   + caddc 11124  cle 11262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-po 5558  df-so 5559  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-er 8713  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267
This theorem is referenced by:  addge0  11718  le2addi  11792  le2addd  11848  fzadd2  13565  swrdccatin2  14734  cshwcsh2id  14834  01sqrexlem7  15254  lo1add  15630  climcndslem1  15852  climcndslem2  15853  mdegmullem  26020  mumullem2  27126  pntrsumbnd2  27514  pntlemf  27552  crctcshwlkn0  29735  ubthlem2  30784  nmoptrii  32007  cdj3i  32354  itg2addnc  37619  jm2.26lem3  42950  gbegt5  47693  gbowgt5  47694  gboge9  47696
  Copyright terms: Public domain W3C validator