MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modaddmodup Structured version   Visualization version   GIF version

Theorem modaddmodup 13899
Description: The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
modaddmodup ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀)))

Proof of Theorem modaddmodup
StepHypRef Expression
1 elfzoelz 13620 . . . . . . . 8 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → 𝐵 ∈ ℤ)
21zred 12638 . . . . . . 7 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → 𝐵 ∈ ℝ)
32adantr 480 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐵 ∈ ℝ)
4 zmodcl 13853 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ∈ ℕ0)
54nn0red 12504 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ∈ ℝ)
65adantl 481 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐴 mod 𝑀) ∈ ℝ)
73, 6readdcld 11203 . . . . 5 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℝ)
87ancoms 458 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℝ)
9 nnrp 12963 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ+)
109ad2antlr 727 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → 𝑀 ∈ ℝ+)
11 elfzo2 13623 . . . . . 6 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ↔ (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ∧ 𝑀 ∈ ℤ ∧ 𝐵 < 𝑀))
12 eluz2 12799 . . . . . . . 8 (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ↔ ((𝑀 − (𝐴 mod 𝑀)) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵))
13 nnre 12193 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1413adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
1514adantl 481 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝑀 ∈ ℝ)
165adantl 481 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐴 mod 𝑀) ∈ ℝ)
17 zre 12533 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
1817adantr 480 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐵 ∈ ℝ)
1915, 16, 18lesubaddd 11775 . . . . . . . . . . 11 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2019biimpd 229 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2120impancom 451 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ (𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
22213adant1 1130 . . . . . . . 8 (((𝑀 − (𝐴 mod 𝑀)) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2312, 22sylbi 217 . . . . . . 7 (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
24233ad2ant1 1133 . . . . . 6 ((𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ∧ 𝑀 ∈ ℤ ∧ 𝐵 < 𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2511, 24sylbi 217 . . . . 5 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2625impcom 407 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀)))
27 eluzelz 12803 . . . . . . . . 9 (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) → 𝐵 ∈ ℤ)
2817, 5anim12i 613 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐵 ∈ ℝ ∧ (𝐴 mod 𝑀) ∈ ℝ))
2913, 13jca 511 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ))
3029adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ))
3130adantl 481 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ))
3228, 31jca 511 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝐵 ∈ ℝ ∧ (𝐴 mod 𝑀) ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ)))
3332adantr 480 . . . . . . . . . . . . 13 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → ((𝐵 ∈ ℝ ∧ (𝐴 mod 𝑀) ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ)))
34 simpr 484 . . . . . . . . . . . . . 14 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → 𝐵 < 𝑀)
35 zre 12533 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
36 modlt 13842 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) < 𝑀)
3735, 9, 36syl2an 596 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) < 𝑀)
385, 14, 37ltled 11322 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ≤ 𝑀)
3938ad2antlr 727 . . . . . . . . . . . . . 14 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (𝐴 mod 𝑀) ≤ 𝑀)
4034, 39jca 511 . . . . . . . . . . . . 13 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (𝐵 < 𝑀 ∧ (𝐴 mod 𝑀) ≤ 𝑀))
41 ltleadd 11661 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝐴 mod 𝑀) ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((𝐵 < 𝑀 ∧ (𝐴 mod 𝑀) ≤ 𝑀) → (𝐵 + (𝐴 mod 𝑀)) < (𝑀 + 𝑀)))
4233, 40, 41sylc 65 . . . . . . . . . . . 12 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (𝐵 + (𝐴 mod 𝑀)) < (𝑀 + 𝑀))
43 nncn 12194 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
44432timesd 12425 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (2 · 𝑀) = (𝑀 + 𝑀))
4544adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) = (𝑀 + 𝑀))
4645ad2antlr 727 . . . . . . . . . . . 12 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (2 · 𝑀) = (𝑀 + 𝑀))
4742, 46breqtrrd 5135 . . . . . . . . . . 11 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))
4847exp31 419 . . . . . . . . . 10 (𝐵 ∈ ℤ → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 < 𝑀 → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))))
4948com23 86 . . . . . . . . 9 (𝐵 ∈ ℤ → (𝐵 < 𝑀 → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))))
5027, 49syl 17 . . . . . . . 8 (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) → (𝐵 < 𝑀 → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))))
5150imp 406 . . . . . . 7 ((𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ∧ 𝐵 < 𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀)))
52513adant2 1131 . . . . . 6 ((𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ∧ 𝑀 ∈ ℤ ∧ 𝐵 < 𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀)))
5311, 52sylbi 217 . . . . 5 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀)))
5453impcom 407 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))
55 2submod 13897 . . . . 5 ((((𝐵 + (𝐴 mod 𝑀)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (𝑀 ≤ (𝐵 + (𝐴 mod 𝑀)) ∧ (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + (𝐴 mod 𝑀)) − 𝑀))
5655eqcomd 2735 . . . 4 ((((𝐵 + (𝐴 mod 𝑀)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (𝑀 ≤ (𝐵 + (𝐴 mod 𝑀)) ∧ (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀))
578, 10, 26, 54, 56syl22anc 838 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀))
5835adantr 480 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝐴 ∈ ℝ)
5958adantr 480 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → 𝐴 ∈ ℝ)
602adantl 481 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → 𝐵 ∈ ℝ)
61 modadd2mod 13886 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
6259, 60, 10, 61syl3anc 1373 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
6357, 62eqtrd 2764 . 2 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
6463ex 412 1 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  cn 12186  2c2 12241  cz 12529  cuz 12793  +crp 12951  ..^cfzo 13615   mod cmo 13831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832
This theorem is referenced by:  cshwidxmod  14768
  Copyright terms: Public domain W3C validator