MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modaddmodup Structured version   Visualization version   GIF version

Theorem modaddmodup 13582
Description: The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
modaddmodup ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀)))

Proof of Theorem modaddmodup
StepHypRef Expression
1 elfzoelz 13316 . . . . . . . 8 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → 𝐵 ∈ ℤ)
21zred 12355 . . . . . . 7 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → 𝐵 ∈ ℝ)
32adantr 480 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐵 ∈ ℝ)
4 zmodcl 13539 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ∈ ℕ0)
54nn0red 12224 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ∈ ℝ)
65adantl 481 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐴 mod 𝑀) ∈ ℝ)
73, 6readdcld 10935 . . . . 5 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℝ)
87ancoms 458 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℝ)
9 nnrp 12670 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ+)
109ad2antlr 723 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → 𝑀 ∈ ℝ+)
11 elfzo2 13319 . . . . . 6 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ↔ (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ∧ 𝑀 ∈ ℤ ∧ 𝐵 < 𝑀))
12 eluz2 12517 . . . . . . . 8 (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ↔ ((𝑀 − (𝐴 mod 𝑀)) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵))
13 nnre 11910 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1413adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
1514adantl 481 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝑀 ∈ ℝ)
165adantl 481 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐴 mod 𝑀) ∈ ℝ)
17 zre 12253 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
1817adantr 480 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐵 ∈ ℝ)
1915, 16, 18lesubaddd 11502 . . . . . . . . . . 11 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2019biimpd 228 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2120impancom 451 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ (𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
22213adant1 1128 . . . . . . . 8 (((𝑀 − (𝐴 mod 𝑀)) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2312, 22sylbi 216 . . . . . . 7 (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
24233ad2ant1 1131 . . . . . 6 ((𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ∧ 𝑀 ∈ ℤ ∧ 𝐵 < 𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2511, 24sylbi 216 . . . . 5 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2625impcom 407 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀)))
27 eluzelz 12521 . . . . . . . . 9 (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) → 𝐵 ∈ ℤ)
2817, 5anim12i 612 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐵 ∈ ℝ ∧ (𝐴 mod 𝑀) ∈ ℝ))
2913, 13jca 511 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ))
3029adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ))
3130adantl 481 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ))
3228, 31jca 511 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝐵 ∈ ℝ ∧ (𝐴 mod 𝑀) ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ)))
3332adantr 480 . . . . . . . . . . . . 13 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → ((𝐵 ∈ ℝ ∧ (𝐴 mod 𝑀) ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ)))
34 simpr 484 . . . . . . . . . . . . . 14 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → 𝐵 < 𝑀)
35 zre 12253 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
36 modlt 13528 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) < 𝑀)
3735, 9, 36syl2an 595 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) < 𝑀)
385, 14, 37ltled 11053 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ≤ 𝑀)
3938ad2antlr 723 . . . . . . . . . . . . . 14 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (𝐴 mod 𝑀) ≤ 𝑀)
4034, 39jca 511 . . . . . . . . . . . . 13 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (𝐵 < 𝑀 ∧ (𝐴 mod 𝑀) ≤ 𝑀))
41 ltleadd 11388 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝐴 mod 𝑀) ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((𝐵 < 𝑀 ∧ (𝐴 mod 𝑀) ≤ 𝑀) → (𝐵 + (𝐴 mod 𝑀)) < (𝑀 + 𝑀)))
4233, 40, 41sylc 65 . . . . . . . . . . . 12 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (𝐵 + (𝐴 mod 𝑀)) < (𝑀 + 𝑀))
43 nncn 11911 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
44432timesd 12146 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (2 · 𝑀) = (𝑀 + 𝑀))
4544adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) = (𝑀 + 𝑀))
4645ad2antlr 723 . . . . . . . . . . . 12 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (2 · 𝑀) = (𝑀 + 𝑀))
4742, 46breqtrrd 5098 . . . . . . . . . . 11 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))
4847exp31 419 . . . . . . . . . 10 (𝐵 ∈ ℤ → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 < 𝑀 → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))))
4948com23 86 . . . . . . . . 9 (𝐵 ∈ ℤ → (𝐵 < 𝑀 → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))))
5027, 49syl 17 . . . . . . . 8 (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) → (𝐵 < 𝑀 → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))))
5150imp 406 . . . . . . 7 ((𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ∧ 𝐵 < 𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀)))
52513adant2 1129 . . . . . 6 ((𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ∧ 𝑀 ∈ ℤ ∧ 𝐵 < 𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀)))
5311, 52sylbi 216 . . . . 5 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀)))
5453impcom 407 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))
55 2submod 13580 . . . . 5 ((((𝐵 + (𝐴 mod 𝑀)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (𝑀 ≤ (𝐵 + (𝐴 mod 𝑀)) ∧ (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + (𝐴 mod 𝑀)) − 𝑀))
5655eqcomd 2744 . . . 4 ((((𝐵 + (𝐴 mod 𝑀)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (𝑀 ≤ (𝐵 + (𝐴 mod 𝑀)) ∧ (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀))
578, 10, 26, 54, 56syl22anc 835 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀))
5835adantr 480 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝐴 ∈ ℝ)
5958adantr 480 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → 𝐴 ∈ ℝ)
602adantl 481 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → 𝐵 ∈ ℝ)
61 modadd2mod 13569 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
6259, 60, 10, 61syl3anc 1369 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
6357, 62eqtrd 2778 . 2 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
6463ex 412 1 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  cn 11903  2c2 11958  cz 12249  cuz 12511  +crp 12659  ..^cfzo 13311   mod cmo 13517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518
This theorem is referenced by:  cshwidxmod  14444
  Copyright terms: Public domain W3C validator