Step | Hyp | Ref
| Expression |
1 | | simp11 1202 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΎ β HL β§ π β π»)) |
2 | | simp22 1206 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β πΊ β π) |
3 | | simp12 1203 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (π β π΄ β§ Β¬ π β€ π)) |
4 | | simp21 1205 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β πΉ β π) |
5 | | cdlemg12.l |
. . . . . 6
β’ β€ =
(leβπΎ) |
6 | | cdlemg12.a |
. . . . . 6
β’ π΄ = (AtomsβπΎ) |
7 | | cdlemg12.h |
. . . . . 6
β’ π» = (LHypβπΎ) |
8 | | cdlemg12.t |
. . . . . 6
β’ π = ((LTrnβπΎ)βπ) |
9 | 5, 6, 7, 8 | ltrnel 39314 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (π β π΄ β§ Β¬ π β€ π)) β ((πΉβπ) β π΄ β§ Β¬ (πΉβπ) β€ π)) |
10 | 1, 4, 3, 9 | syl3anc 1370 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((πΉβπ) β π΄ β§ Β¬ (πΉβπ) β€ π)) |
11 | | simp31 1208 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΊβπ) β π) |
12 | 5, 6, 7, 8 | ltrnatneq 39357 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (πΊ β π β§ (π β π΄ β§ Β¬ π β€ π) β§ ((πΉβπ) β π΄ β§ Β¬ (πΉβπ) β€ π)) β§ (πΊβπ) β π) β (πΊβ(πΉβπ)) β (πΉβπ)) |
13 | 1, 2, 3, 10, 11, 12 | syl131anc 1382 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΊβ(πΉβπ)) β (πΉβπ)) |
14 | 13 | neneqd 2944 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β Β¬ (πΊβ(πΉβπ)) = (πΉβπ)) |
15 | | simp1 1135 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π))) |
16 | 5, 6, 7, 8 | ltrnel 39314 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ πΊ β π β§ ((πΉβπ) β π΄ β§ Β¬ (πΉβπ) β€ π)) β ((πΊβ(πΉβπ)) β π΄ β§ Β¬ (πΊβ(πΉβπ)) β€ π)) |
17 | 1, 2, 10, 16 | syl3anc 1370 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((πΊβ(πΉβπ)) β π΄ β§ Β¬ (πΊβ(πΉβπ)) β€ π)) |
18 | 4, 2 | jca 511 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΉ β π β§ πΊ β π)) |
19 | | simp23 1207 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β π β π) |
20 | | cdlemg12.j |
. . . . . 6
β’ β¨ =
(joinβπΎ) |
21 | | cdlemg12.m |
. . . . . 6
β’ β§ =
(meetβπΎ) |
22 | | cdlemg12b.r |
. . . . . 6
β’ π
= ((trLβπΎ)βπ) |
23 | 5, 20, 21, 6, 7, 8,
22 | cdlemg17g 39842 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΊβ(πΉβπ)) β€ ((πΉβπ) β¨ (πΉβπ))) |
24 | 19, 23 | jca 511 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (π β π β§ (πΊβ(πΉβπ)) β€ ((πΉβπ) β¨ (πΉβπ)))) |
25 | | simp3 1137 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) |
26 | 5, 20, 21, 6, 7, 8,
22 | cdlemg17h 39843 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (((πΊβ(πΉβπ)) β π΄ β§ Β¬ (πΊβ(πΉβπ)) β€ π) β§ (πΉ β π β§ πΊ β π) β§ (π β π β§ (πΊβ(πΉβπ)) β€ ((πΉβπ) β¨ (πΉβπ)))) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((πΊβ(πΉβπ)) = (πΉβπ) β¨ (πΊβ(πΉβπ)) = (πΉβπ))) |
27 | 15, 17, 18, 24, 25, 26 | syl131anc 1382 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((πΊβ(πΉβπ)) = (πΉβπ) β¨ (πΊβ(πΉβπ)) = (πΉβπ))) |
28 | 27 | ord 861 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (Β¬ (πΊβ(πΉβπ)) = (πΉβπ) β (πΊβ(πΉβπ)) = (πΉβπ))) |
29 | 14, 28 | mpd 15 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΊβ(πΉβπ)) = (πΉβπ)) |