![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlnidat | Structured version Visualization version GIF version |
Description: The trace of a lattice translation other than the identity is an atom. Remark above Lemma C in [Crawley] p. 112. (Contributed by NM, 23-May-2012.) |
Ref | Expression |
---|---|
trlnidat.b | β’ π΅ = (BaseβπΎ) |
trlnidat.a | β’ π΄ = (AtomsβπΎ) |
trlnidat.h | β’ π» = (LHypβπΎ) |
trlnidat.t | β’ π = ((LTrnβπΎ)βπ) |
trlnidat.r | β’ π = ((trLβπΎ)βπ) |
Ref | Expression |
---|---|
trlnidat | β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΉ β ( I βΎ π΅)) β (π βπΉ) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlnidat.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | eqid 2732 | . . 3 β’ (leβπΎ) = (leβπΎ) | |
3 | trlnidat.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
4 | trlnidat.h | . . 3 β’ π» = (LHypβπΎ) | |
5 | trlnidat.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
6 | 1, 2, 3, 4, 5 | ltrnnid 38995 | . 2 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΉ β ( I βΎ π΅)) β βπ β π΄ (Β¬ π(leβπΎ)π β§ (πΉβπ) β π)) |
7 | simp11 1203 | . . . 4 β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ πΉ β ( I βΎ π΅)) β§ π β π΄ β§ (Β¬ π(leβπΎ)π β§ (πΉβπ) β π)) β (πΎ β HL β§ π β π»)) | |
8 | simp2 1137 | . . . 4 β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ πΉ β ( I βΎ π΅)) β§ π β π΄ β§ (Β¬ π(leβπΎ)π β§ (πΉβπ) β π)) β π β π΄) | |
9 | simp3l 1201 | . . . 4 β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ πΉ β ( I βΎ π΅)) β§ π β π΄ β§ (Β¬ π(leβπΎ)π β§ (πΉβπ) β π)) β Β¬ π(leβπΎ)π) | |
10 | simp12 1204 | . . . 4 β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ πΉ β ( I βΎ π΅)) β§ π β π΄ β§ (Β¬ π(leβπΎ)π β§ (πΉβπ) β π)) β πΉ β π) | |
11 | simp3r 1202 | . . . 4 β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ πΉ β ( I βΎ π΅)) β§ π β π΄ β§ (Β¬ π(leβπΎ)π β§ (πΉβπ) β π)) β (πΉβπ) β π) | |
12 | trlnidat.r | . . . . 5 β’ π = ((trLβπΎ)βπ) | |
13 | 2, 3, 4, 5, 12 | trlat 39028 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π(leβπΎ)π) β§ (πΉ β π β§ (πΉβπ) β π)) β (π βπΉ) β π΄) |
14 | 7, 8, 9, 10, 11, 13 | syl122anc 1379 | . . 3 β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ πΉ β ( I βΎ π΅)) β§ π β π΄ β§ (Β¬ π(leβπΎ)π β§ (πΉβπ) β π)) β (π βπΉ) β π΄) |
15 | 14 | rexlimdv3a 3159 | . 2 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΉ β ( I βΎ π΅)) β (βπ β π΄ (Β¬ π(leβπΎ)π β§ (πΉβπ) β π) β (π βπΉ) β π΄)) |
16 | 6, 15 | mpd 15 | 1 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΉ β ( I βΎ π΅)) β (π βπΉ) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 βwrex 3070 class class class wbr 5147 I cid 5572 βΎ cres 5677 βcfv 6540 Basecbs 17140 lecple 17200 Atomscatm 38121 HLchlt 38208 LHypclh 38843 LTrncltrn 38960 trLctrl 39017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8818 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-lhyp 38847 df-laut 38848 df-ldil 38963 df-ltrn 38964 df-trl 39018 |
This theorem is referenced by: ltrnnidn 39033 trlnidatb 39036 trlcone 39587 cdlemg46 39594 trljco 39599 cdlemh2 39675 cdlemh 39676 tendotr 39689 cdlemk3 39692 cdlemk12 39709 cdlemkole 39712 cdlemk14 39713 cdlemk15 39714 cdlemk1u 39718 cdlemk5u 39720 cdlemk12u 39731 cdlemk37 39773 cdlemk39 39775 cdlemkid1 39781 cdlemk47 39808 cdlemk51 39812 cdlemk52 39813 cdleml1N 39835 |
Copyright terms: Public domain | W3C validator |