Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlnidat | Structured version Visualization version GIF version |
Description: The trace of a lattice translation other than the identity is an atom. Remark above Lemma C in [Crawley] p. 112. (Contributed by NM, 23-May-2012.) |
Ref | Expression |
---|---|
trlnidat.b | ⊢ 𝐵 = (Base‘𝐾) |
trlnidat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
trlnidat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlnidat.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlnidat.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlnidat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘𝐹) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlnidat.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2738 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | trlnidat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | trlnidat.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | trlnidat.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | ltrnnid 38150 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) |
7 | simp11 1202 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | simp2 1136 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) → 𝑝 ∈ 𝐴) | |
9 | simp3l 1200 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) → ¬ 𝑝(le‘𝐾)𝑊) | |
10 | simp12 1203 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) → 𝐹 ∈ 𝑇) | |
11 | simp3r 1201 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) → (𝐹‘𝑝) ≠ 𝑝) | |
12 | trlnidat.r | . . . . 5 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
13 | 2, 3, 4, 5, 12 | trlat 38183 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑝) ≠ 𝑝)) → (𝑅‘𝐹) ∈ 𝐴) |
14 | 7, 8, 9, 10, 11, 13 | syl122anc 1378 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) → (𝑅‘𝐹) ∈ 𝐴) |
15 | 14 | rexlimdv3a 3215 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (∃𝑝 ∈ 𝐴 (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝) → (𝑅‘𝐹) ∈ 𝐴)) |
16 | 6, 15 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘𝐹) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 class class class wbr 5074 I cid 5488 ↾ cres 5591 ‘cfv 6433 Basecbs 16912 lecple 16969 Atomscatm 37277 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 trLctrl 38172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 |
This theorem is referenced by: ltrnnidn 38188 trlnidatb 38191 trlcone 38742 cdlemg46 38749 trljco 38754 cdlemh2 38830 cdlemh 38831 tendotr 38844 cdlemk3 38847 cdlemk12 38864 cdlemkole 38867 cdlemk14 38868 cdlemk15 38869 cdlemk1u 38873 cdlemk5u 38875 cdlemk12u 38886 cdlemk37 38928 cdlemk39 38930 cdlemkid1 38936 cdlemk47 38963 cdlemk51 38967 cdlemk52 38968 cdleml1N 38990 |
Copyright terms: Public domain | W3C validator |