Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnidat Structured version   Visualization version   GIF version

Theorem trlnidat 40138
Description: The trace of a lattice translation other than the identity is an atom. Remark above Lemma C in [Crawley] p. 112. (Contributed by NM, 23-May-2012.)
Hypotheses
Ref Expression
trlnidat.b 𝐵 = (Base‘𝐾)
trlnidat.a 𝐴 = (Atoms‘𝐾)
trlnidat.h 𝐻 = (LHyp‘𝐾)
trlnidat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlnidat.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlnidat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ 𝐴)

Proof of Theorem trlnidat
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 trlnidat.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2735 . . 3 (le‘𝐾) = (le‘𝐾)
3 trlnidat.a . . 3 𝐴 = (Atoms‘𝐾)
4 trlnidat.h . . 3 𝐻 = (LHyp‘𝐾)
5 trlnidat.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
61, 2, 3, 4, 5ltrnnid 40101 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝𝐴𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
7 simp11 1204 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simp2 1137 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → 𝑝𝐴)
9 simp3l 1202 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → ¬ 𝑝(le‘𝐾)𝑊)
10 simp12 1205 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → 𝐹𝑇)
11 simp3r 1203 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → (𝐹𝑝) ≠ 𝑝)
12 trlnidat.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
132, 3, 4, 5, 12trlat 40134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑝) ≠ 𝑝)) → (𝑅𝐹) ∈ 𝐴)
147, 8, 9, 10, 11, 13syl122anc 1381 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → (𝑅𝐹) ∈ 𝐴)
1514rexlimdv3a 3145 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (∃𝑝𝐴𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝) → (𝑅𝐹) ∈ 𝐴))
166, 15mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060   class class class wbr 5119   I cid 5547  cres 5656  cfv 6530  Basecbs 17226  lecple 17276  Atomscatm 39227  HLchlt 39314  LHypclh 39949  LTrncltrn 40066  trLctrl 40123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-map 8840  df-proset 18304  df-poset 18323  df-plt 18338  df-lub 18354  df-glb 18355  df-join 18356  df-meet 18357  df-p0 18433  df-p1 18434  df-lat 18440  df-clat 18507  df-oposet 39140  df-ol 39142  df-oml 39143  df-covers 39230  df-ats 39231  df-atl 39262  df-cvlat 39286  df-hlat 39315  df-lhyp 39953  df-laut 39954  df-ldil 40069  df-ltrn 40070  df-trl 40124
This theorem is referenced by:  ltrnnidn  40139  trlnidatb  40142  trlcone  40693  cdlemg46  40700  trljco  40705  cdlemh2  40781  cdlemh  40782  tendotr  40795  cdlemk3  40798  cdlemk12  40815  cdlemkole  40818  cdlemk14  40819  cdlemk15  40820  cdlemk1u  40824  cdlemk5u  40826  cdlemk12u  40837  cdlemk37  40879  cdlemk39  40881  cdlemkid1  40887  cdlemk47  40914  cdlemk51  40918  cdlemk52  40919  cdleml1N  40941
  Copyright terms: Public domain W3C validator