Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnidat Structured version   Visualization version   GIF version

Theorem trlnidat 40130
Description: The trace of a lattice translation other than the identity is an atom. Remark above Lemma C in [Crawley] p. 112. (Contributed by NM, 23-May-2012.)
Hypotheses
Ref Expression
trlnidat.b 𝐵 = (Base‘𝐾)
trlnidat.a 𝐴 = (Atoms‘𝐾)
trlnidat.h 𝐻 = (LHyp‘𝐾)
trlnidat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlnidat.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlnidat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ 𝐴)

Proof of Theorem trlnidat
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 trlnidat.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2740 . . 3 (le‘𝐾) = (le‘𝐾)
3 trlnidat.a . . 3 𝐴 = (Atoms‘𝐾)
4 trlnidat.h . . 3 𝐻 = (LHyp‘𝐾)
5 trlnidat.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
61, 2, 3, 4, 5ltrnnid 40093 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝𝐴𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
7 simp11 1203 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simp2 1137 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → 𝑝𝐴)
9 simp3l 1201 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → ¬ 𝑝(le‘𝐾)𝑊)
10 simp12 1204 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → 𝐹𝑇)
11 simp3r 1202 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → (𝐹𝑝) ≠ 𝑝)
12 trlnidat.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
132, 3, 4, 5, 12trlat 40126 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑝) ≠ 𝑝)) → (𝑅𝐹) ∈ 𝐴)
147, 8, 9, 10, 11, 13syl122anc 1379 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → (𝑅𝐹) ∈ 𝐴)
1514rexlimdv3a 3165 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (∃𝑝𝐴𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝) → (𝑅𝐹) ∈ 𝐴))
166, 15mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166   I cid 5592  cres 5702  cfv 6573  Basecbs 17258  lecple 17318  Atomscatm 39219  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  trLctrl 40115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116
This theorem is referenced by:  ltrnnidn  40131  trlnidatb  40134  trlcone  40685  cdlemg46  40692  trljco  40697  cdlemh2  40773  cdlemh  40774  tendotr  40787  cdlemk3  40790  cdlemk12  40807  cdlemkole  40810  cdlemk14  40811  cdlemk15  40812  cdlemk1u  40816  cdlemk5u  40818  cdlemk12u  40829  cdlemk37  40871  cdlemk39  40873  cdlemkid1  40879  cdlemk47  40906  cdlemk51  40910  cdlemk52  40911  cdleml1N  40933
  Copyright terms: Public domain W3C validator