Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnidat Structured version   Visualization version   GIF version

Theorem trlnidat 39646
Description: The trace of a lattice translation other than the identity is an atom. Remark above Lemma C in [Crawley] p. 112. (Contributed by NM, 23-May-2012.)
Hypotheses
Ref Expression
trlnidat.b 𝐵 = (Base‘𝐾)
trlnidat.a 𝐴 = (Atoms‘𝐾)
trlnidat.h 𝐻 = (LHyp‘𝐾)
trlnidat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlnidat.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlnidat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ 𝐴)

Proof of Theorem trlnidat
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 trlnidat.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2728 . . 3 (le‘𝐾) = (le‘𝐾)
3 trlnidat.a . . 3 𝐴 = (Atoms‘𝐾)
4 trlnidat.h . . 3 𝐻 = (LHyp‘𝐾)
5 trlnidat.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
61, 2, 3, 4, 5ltrnnid 39609 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝𝐴𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
7 simp11 1201 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simp2 1135 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → 𝑝𝐴)
9 simp3l 1199 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → ¬ 𝑝(le‘𝐾)𝑊)
10 simp12 1202 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → 𝐹𝑇)
11 simp3r 1200 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → (𝐹𝑝) ≠ 𝑝)
12 trlnidat.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
132, 3, 4, 5, 12trlat 39642 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑝) ≠ 𝑝)) → (𝑅𝐹) ∈ 𝐴)
147, 8, 9, 10, 11, 13syl122anc 1377 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝)) → (𝑅𝐹) ∈ 𝐴)
1514rexlimdv3a 3156 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (∃𝑝𝐴𝑝(le‘𝐾)𝑊 ∧ (𝐹𝑝) ≠ 𝑝) → (𝑅𝐹) ∈ 𝐴))
166, 15mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937  wrex 3067   class class class wbr 5148   I cid 5575  cres 5680  cfv 6548  Basecbs 17180  lecple 17240  Atomscatm 38735  HLchlt 38822  LHypclh 39457  LTrncltrn 39574  trLctrl 39631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-map 8847  df-proset 18287  df-poset 18305  df-plt 18322  df-lub 18338  df-glb 18339  df-join 18340  df-meet 18341  df-p0 18417  df-p1 18418  df-lat 18424  df-clat 18491  df-oposet 38648  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-lhyp 39461  df-laut 39462  df-ldil 39577  df-ltrn 39578  df-trl 39632
This theorem is referenced by:  ltrnnidn  39647  trlnidatb  39650  trlcone  40201  cdlemg46  40208  trljco  40213  cdlemh2  40289  cdlemh  40290  tendotr  40303  cdlemk3  40306  cdlemk12  40323  cdlemkole  40326  cdlemk14  40327  cdlemk15  40328  cdlemk1u  40332  cdlemk5u  40334  cdlemk12u  40345  cdlemk37  40387  cdlemk39  40389  cdlemkid1  40395  cdlemk47  40422  cdlemk51  40426  cdlemk52  40427  cdleml1N  40449
  Copyright terms: Public domain W3C validator