Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trl0 Structured version   Visualization version   GIF version

Theorem trl0 38163
Description: If an atom not under the fiducial co-atom 𝑊 equals its lattice translation, the trace of the translation is zero. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
trl0.l = (le‘𝐾)
trl0.z 0 = (0.‘𝐾)
trl0.a 𝐴 = (Atoms‘𝐾)
trl0.h 𝐻 = (LHyp‘𝐾)
trl0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trl0.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trl0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = 0 )

Proof of Theorem trl0
StepHypRef Expression
1 simp1 1134 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp3l 1199 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → 𝐹𝑇)
3 simp2 1135 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 trl0.l . . . 4 = (le‘𝐾)
5 eqid 2739 . . . 4 (join‘𝐾) = (join‘𝐾)
6 eqid 2739 . . . 4 (meet‘𝐾) = (meet‘𝐾)
7 trl0.a . . . 4 𝐴 = (Atoms‘𝐾)
8 trl0.h . . . 4 𝐻 = (LHyp‘𝐾)
9 trl0.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trl0.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
114, 5, 6, 7, 8, 9, 10trlval2 38156 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃(join‘𝐾)(𝐹𝑃))(meet‘𝐾)𝑊))
121, 2, 3, 11syl3anc 1369 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = ((𝑃(join‘𝐾)(𝐹𝑃))(meet‘𝐾)𝑊))
13 simp3r 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝐹𝑃) = 𝑃)
1413oveq2d 7284 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑃(join‘𝐾)(𝐹𝑃)) = (𝑃(join‘𝐾)𝑃))
15 simp1l 1195 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → 𝐾 ∈ HL)
16 simp2l 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → 𝑃𝐴)
175, 7hlatjidm 37362 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃)
1815, 16, 17syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑃(join‘𝐾)𝑃) = 𝑃)
1914, 18eqtrd 2779 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑃(join‘𝐾)(𝐹𝑃)) = 𝑃)
2019oveq1d 7283 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → ((𝑃(join‘𝐾)(𝐹𝑃))(meet‘𝐾)𝑊) = (𝑃(meet‘𝐾)𝑊))
21 trl0.z . . . 4 0 = (0.‘𝐾)
224, 6, 21, 7, 8lhpmat 38023 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃(meet‘𝐾)𝑊) = 0 )
231, 3, 22syl2anc 583 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑃(meet‘𝐾)𝑊) = 0 )
2412, 20, 233eqtrd 2783 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109   class class class wbr 5078  cfv 6430  (class class class)co 7268  lecple 16950  joincjn 18010  meetcmee 18011  0.cp0 18122  Atomscatm 37256  HLchlt 37343  LHypclh 37977  LTrncltrn 38094  trLctrl 38151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-map 8591  df-proset 17994  df-poset 18012  df-plt 18029  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-p0 18124  df-lat 18131  df-covers 37259  df-ats 37260  df-atl 37291  df-cvlat 37315  df-hlat 37344  df-lhyp 37981  df-laut 37982  df-ldil 38097  df-ltrn 38098  df-trl 38152
This theorem is referenced by:  trlator0  38164  ltrnnidn  38167  trlid0  38169  trlnidatb  38170  trlnle  38179  trlval3  38180  trlval4  38181  cdlemc6  38189  cdlemg31d  38693
  Copyright terms: Public domain W3C validator