Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trl0 Structured version   Visualization version   GIF version

Theorem trl0 40164
Description: If an atom not under the fiducial co-atom 𝑊 equals its lattice translation, the trace of the translation is zero. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
trl0.l = (le‘𝐾)
trl0.z 0 = (0.‘𝐾)
trl0.a 𝐴 = (Atoms‘𝐾)
trl0.h 𝐻 = (LHyp‘𝐾)
trl0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trl0.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trl0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = 0 )

Proof of Theorem trl0
StepHypRef Expression
1 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp3l 1202 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → 𝐹𝑇)
3 simp2 1137 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 trl0.l . . . 4 = (le‘𝐾)
5 eqid 2729 . . . 4 (join‘𝐾) = (join‘𝐾)
6 eqid 2729 . . . 4 (meet‘𝐾) = (meet‘𝐾)
7 trl0.a . . . 4 𝐴 = (Atoms‘𝐾)
8 trl0.h . . . 4 𝐻 = (LHyp‘𝐾)
9 trl0.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trl0.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
114, 5, 6, 7, 8, 9, 10trlval2 40157 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃(join‘𝐾)(𝐹𝑃))(meet‘𝐾)𝑊))
121, 2, 3, 11syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = ((𝑃(join‘𝐾)(𝐹𝑃))(meet‘𝐾)𝑊))
13 simp3r 1203 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝐹𝑃) = 𝑃)
1413oveq2d 7403 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑃(join‘𝐾)(𝐹𝑃)) = (𝑃(join‘𝐾)𝑃))
15 simp1l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → 𝐾 ∈ HL)
16 simp2l 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → 𝑃𝐴)
175, 7hlatjidm 39362 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃)
1815, 16, 17syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑃(join‘𝐾)𝑃) = 𝑃)
1914, 18eqtrd 2764 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑃(join‘𝐾)(𝐹𝑃)) = 𝑃)
2019oveq1d 7402 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → ((𝑃(join‘𝐾)(𝐹𝑃))(meet‘𝐾)𝑊) = (𝑃(meet‘𝐾)𝑊))
21 trl0.z . . . 4 0 = (0.‘𝐾)
224, 6, 21, 7, 8lhpmat 40024 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃(meet‘𝐾)𝑊) = 0 )
231, 3, 22syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑃(meet‘𝐾)𝑊) = 0 )
2412, 20, 233eqtrd 2768 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  lecple 17227  joincjn 18272  meetcmee 18273  0.cp0 18382  Atomscatm 39256  HLchlt 39343  LHypclh 39978  LTrncltrn 40095  trLctrl 40152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153
This theorem is referenced by:  trlator0  40165  ltrnnidn  40168  trlid0  40170  trlnidatb  40171  trlnle  40180  trlval3  40181  trlval4  40182  cdlemc6  40190  cdlemg31d  40694
  Copyright terms: Public domain W3C validator