![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trl0 | Structured version Visualization version GIF version |
Description: If an atom not under the fiducial co-atom 𝑊 equals its lattice translation, the trace of the translation is zero. (Contributed by NM, 24-May-2012.) |
Ref | Expression |
---|---|
trl0.l | ⊢ ≤ = (le‘𝐾) |
trl0.z | ⊢ 0 = (0.‘𝐾) |
trl0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
trl0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trl0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trl0.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trl0 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → (𝑅‘𝐹) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simp3l 1198 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → 𝐹 ∈ 𝑇) | |
3 | simp2 1134 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
4 | trl0.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
5 | eqid 2726 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
6 | eqid 2726 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
7 | trl0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | trl0.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | trl0.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | trl0.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
11 | 4, 5, 6, 7, 8, 9, 10 | trlval2 39862 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) = ((𝑃(join‘𝐾)(𝐹‘𝑃))(meet‘𝐾)𝑊)) |
12 | 1, 2, 3, 11 | syl3anc 1368 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → (𝑅‘𝐹) = ((𝑃(join‘𝐾)(𝐹‘𝑃))(meet‘𝐾)𝑊)) |
13 | simp3r 1199 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → (𝐹‘𝑃) = 𝑃) | |
14 | 13 | oveq2d 7440 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → (𝑃(join‘𝐾)(𝐹‘𝑃)) = (𝑃(join‘𝐾)𝑃)) |
15 | simp1l 1194 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → 𝐾 ∈ HL) | |
16 | simp2l 1196 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → 𝑃 ∈ 𝐴) | |
17 | 5, 7 | hlatjidm 39067 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃) |
18 | 15, 16, 17 | syl2anc 582 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → (𝑃(join‘𝐾)𝑃) = 𝑃) |
19 | 14, 18 | eqtrd 2766 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → (𝑃(join‘𝐾)(𝐹‘𝑃)) = 𝑃) |
20 | 19 | oveq1d 7439 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → ((𝑃(join‘𝐾)(𝐹‘𝑃))(meet‘𝐾)𝑊) = (𝑃(meet‘𝐾)𝑊)) |
21 | trl0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
22 | 4, 6, 21, 7, 8 | lhpmat 39729 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃(meet‘𝐾)𝑊) = 0 ) |
23 | 1, 3, 22 | syl2anc 582 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → (𝑃(meet‘𝐾)𝑊) = 0 ) |
24 | 12, 20, 23 | 3eqtrd 2770 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → (𝑅‘𝐹) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 lecple 17273 joincjn 18336 meetcmee 18337 0.cp0 18448 Atomscatm 38961 HLchlt 39048 LHypclh 39683 LTrncltrn 39800 trLctrl 39857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-map 8857 df-proset 18320 df-poset 18338 df-plt 18355 df-lub 18371 df-glb 18372 df-join 18373 df-meet 18374 df-p0 18450 df-lat 18457 df-covers 38964 df-ats 38965 df-atl 38996 df-cvlat 39020 df-hlat 39049 df-lhyp 39687 df-laut 39688 df-ldil 39803 df-ltrn 39804 df-trl 39858 |
This theorem is referenced by: trlator0 39870 ltrnnidn 39873 trlid0 39875 trlnidatb 39876 trlnle 39885 trlval3 39886 trlval4 39887 cdlemc6 39895 cdlemg31d 40399 |
Copyright terms: Public domain | W3C validator |