Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cshwshashlem3 | Structured version Visualization version GIF version |
Description: If cyclically shifting a word of length being a prime number and not of identical symbols by different numbers of positions, the resulting words are different. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.) |
Ref | Expression |
---|---|
cshwshash.0 | ⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) |
Ref | Expression |
---|---|
cshwshashlem3 | ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ≠ 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoelz 13369 | . . . . . 6 ⊢ (𝐾 ∈ (0..^(♯‘𝑊)) → 𝐾 ∈ ℤ) | |
2 | 1 | zred 12408 | . . . . 5 ⊢ (𝐾 ∈ (0..^(♯‘𝑊)) → 𝐾 ∈ ℝ) |
3 | elfzoelz 13369 | . . . . . 6 ⊢ (𝐿 ∈ (0..^(♯‘𝑊)) → 𝐿 ∈ ℤ) | |
4 | 3 | zred 12408 | . . . . 5 ⊢ (𝐿 ∈ (0..^(♯‘𝑊)) → 𝐿 ∈ ℝ) |
5 | lttri2 11041 | . . . . 5 ⊢ ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝐾 ≠ 𝐿 ↔ (𝐾 < 𝐿 ∨ 𝐿 < 𝐾))) | |
6 | 2, 4, 5 | syl2anr 596 | . . . 4 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾 ≠ 𝐿 ↔ (𝐾 < 𝐿 ∨ 𝐿 < 𝐾))) |
7 | cshwshash.0 | . . . . . . . 8 ⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) | |
8 | 7 | cshwshashlem2 16779 | . . . . . . 7 ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
9 | 8 | com12 32 | . . . . . 6 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
10 | 9 | 3expia 1119 | . . . . 5 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾 < 𝐿 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
11 | 7 | cshwshashlem2 16779 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾) → (𝑊 cyclShift 𝐾) ≠ (𝑊 cyclShift 𝐿))) |
12 | 11 | imp 406 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾)) → (𝑊 cyclShift 𝐾) ≠ (𝑊 cyclShift 𝐿)) |
13 | 12 | necomd 3000 | . . . . . . . 8 ⊢ (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)) |
14 | 13 | expcom 413 | . . . . . . 7 ⊢ ((𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
15 | 14 | 3expia 1119 | . . . . . 6 ⊢ ((𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊))) → (𝐿 < 𝐾 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
16 | 15 | ancoms 458 | . . . . 5 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐿 < 𝐾 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
17 | 10, 16 | jaod 855 | . . . 4 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → ((𝐾 < 𝐿 ∨ 𝐿 < 𝐾) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
18 | 6, 17 | sylbid 239 | . . 3 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾 ≠ 𝐿 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
19 | 18 | 3impia 1115 | . 2 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ≠ 𝐿) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
20 | 19 | com12 32 | 1 ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ≠ 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 ∈ wcel 2109 ≠ wne 2944 ∃wrex 3066 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 ℝcr 10854 0cc0 10855 < clt 10993 ..^cfzo 13364 ♯chash 14025 Word cword 14198 cyclShift ccsh 14482 ℙcprime 16357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-oadd 8285 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-inf 9163 df-dju 9643 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-xnn0 12289 df-z 12303 df-uz 12565 df-rp 12713 df-fz 13222 df-fzo 13365 df-fl 13493 df-mod 13571 df-seq 13703 df-exp 13764 df-hash 14026 df-word 14199 df-concat 14255 df-substr 14335 df-pfx 14365 df-reps 14463 df-csh 14483 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-dvds 15945 df-gcd 16183 df-prm 16358 df-phi 16448 |
This theorem is referenced by: cshwsdisj 16781 |
Copyright terms: Public domain | W3C validator |