| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cshwshashlem3 | Structured version Visualization version GIF version | ||
| Description: If cyclically shifting a word of length being a prime number and not of identical symbols by different numbers of positions, the resulting words are different. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.) |
| Ref | Expression |
|---|---|
| cshwshash.0 | ⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) |
| Ref | Expression |
|---|---|
| cshwshashlem3 | ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ≠ 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoelz 13561 | . . . . . 6 ⊢ (𝐾 ∈ (0..^(♯‘𝑊)) → 𝐾 ∈ ℤ) | |
| 2 | 1 | zred 12583 | . . . . 5 ⊢ (𝐾 ∈ (0..^(♯‘𝑊)) → 𝐾 ∈ ℝ) |
| 3 | elfzoelz 13561 | . . . . . 6 ⊢ (𝐿 ∈ (0..^(♯‘𝑊)) → 𝐿 ∈ ℤ) | |
| 4 | 3 | zred 12583 | . . . . 5 ⊢ (𝐿 ∈ (0..^(♯‘𝑊)) → 𝐿 ∈ ℝ) |
| 5 | lttri2 11202 | . . . . 5 ⊢ ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝐾 ≠ 𝐿 ↔ (𝐾 < 𝐿 ∨ 𝐿 < 𝐾))) | |
| 6 | 2, 4, 5 | syl2anr 597 | . . . 4 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾 ≠ 𝐿 ↔ (𝐾 < 𝐿 ∨ 𝐿 < 𝐾))) |
| 7 | cshwshash.0 | . . . . . . . 8 ⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) | |
| 8 | 7 | cshwshashlem2 17010 | . . . . . . 7 ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
| 9 | 8 | com12 32 | . . . . . 6 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
| 10 | 9 | 3expia 1121 | . . . . 5 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾 < 𝐿 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
| 11 | 7 | cshwshashlem2 17010 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾) → (𝑊 cyclShift 𝐾) ≠ (𝑊 cyclShift 𝐿))) |
| 12 | 11 | imp 406 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾)) → (𝑊 cyclShift 𝐾) ≠ (𝑊 cyclShift 𝐿)) |
| 13 | 12 | necomd 2984 | . . . . . . . 8 ⊢ (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)) |
| 14 | 13 | expcom 413 | . . . . . . 7 ⊢ ((𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
| 15 | 14 | 3expia 1121 | . . . . . 6 ⊢ ((𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊))) → (𝐿 < 𝐾 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
| 16 | 15 | ancoms 458 | . . . . 5 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐿 < 𝐾 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
| 17 | 10, 16 | jaod 859 | . . . 4 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → ((𝐾 < 𝐿 ∨ 𝐿 < 𝐾) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
| 18 | 6, 17 | sylbid 240 | . . 3 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾 ≠ 𝐿 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
| 19 | 18 | 3impia 1117 | . 2 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ≠ 𝐿) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
| 20 | 19 | com12 32 | 1 ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ≠ 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 0cc0 11013 < clt 11153 ..^cfzo 13556 ♯chash 14239 Word cword 14422 cyclShift ccsh 14697 ℙcprime 16584 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-hash 14240 df-word 14423 df-concat 14480 df-substr 14551 df-pfx 14581 df-reps 14678 df-csh 14698 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-dvds 16166 df-gcd 16408 df-prm 16585 df-phi 16679 |
| This theorem is referenced by: cshwsdisj 17012 |
| Copyright terms: Public domain | W3C validator |