![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwshashlem3 | Structured version Visualization version GIF version |
Description: If cyclically shifting a word of length being a prime number and not of identical symbols by different numbers of positions, the resulting words are different. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.) |
Ref | Expression |
---|---|
cshwshash.0 | ⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) |
Ref | Expression |
---|---|
cshwshashlem3 | ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ≠ 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoelz 13629 | . . . . . 6 ⊢ (𝐾 ∈ (0..^(♯‘𝑊)) → 𝐾 ∈ ℤ) | |
2 | 1 | zred 12663 | . . . . 5 ⊢ (𝐾 ∈ (0..^(♯‘𝑊)) → 𝐾 ∈ ℝ) |
3 | elfzoelz 13629 | . . . . . 6 ⊢ (𝐿 ∈ (0..^(♯‘𝑊)) → 𝐿 ∈ ℤ) | |
4 | 3 | zred 12663 | . . . . 5 ⊢ (𝐿 ∈ (0..^(♯‘𝑊)) → 𝐿 ∈ ℝ) |
5 | lttri2 11293 | . . . . 5 ⊢ ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝐾 ≠ 𝐿 ↔ (𝐾 < 𝐿 ∨ 𝐿 < 𝐾))) | |
6 | 2, 4, 5 | syl2anr 596 | . . . 4 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾 ≠ 𝐿 ↔ (𝐾 < 𝐿 ∨ 𝐿 < 𝐾))) |
7 | cshwshash.0 | . . . . . . . 8 ⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) | |
8 | 7 | cshwshashlem2 17029 | . . . . . . 7 ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
9 | 8 | com12 32 | . . . . . 6 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
10 | 9 | 3expia 1118 | . . . . 5 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾 < 𝐿 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
11 | 7 | cshwshashlem2 17029 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾) → (𝑊 cyclShift 𝐾) ≠ (𝑊 cyclShift 𝐿))) |
12 | 11 | imp 406 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾)) → (𝑊 cyclShift 𝐾) ≠ (𝑊 cyclShift 𝐿)) |
13 | 12 | necomd 2988 | . . . . . . . 8 ⊢ (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)) |
14 | 13 | expcom 413 | . . . . . . 7 ⊢ ((𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
15 | 14 | 3expia 1118 | . . . . . 6 ⊢ ((𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊))) → (𝐿 < 𝐾 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
16 | 15 | ancoms 458 | . . . . 5 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐿 < 𝐾 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
17 | 10, 16 | jaod 856 | . . . 4 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → ((𝐾 < 𝐿 ∨ 𝐿 < 𝐾) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
18 | 6, 17 | sylbid 239 | . . 3 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾 ≠ 𝐿 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
19 | 18 | 3impia 1114 | . 2 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ≠ 𝐿) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
20 | 19 | com12 32 | 1 ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ≠ 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 ∧ w3a 1084 ∈ wcel 2098 ≠ wne 2932 ∃wrex 3062 class class class wbr 5138 ‘cfv 6533 (class class class)co 7401 ℝcr 11105 0cc0 11106 < clt 11245 ..^cfzo 13624 ♯chash 14287 Word cword 14461 cyclShift ccsh 14735 ℙcprime 16605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-dju 9892 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-xnn0 12542 df-z 12556 df-uz 12820 df-rp 12972 df-fz 13482 df-fzo 13625 df-fl 13754 df-mod 13832 df-seq 13964 df-exp 14025 df-hash 14288 df-word 14462 df-concat 14518 df-substr 14588 df-pfx 14618 df-reps 14716 df-csh 14736 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-dvds 16195 df-gcd 16433 df-prm 16606 df-phi 16698 |
This theorem is referenced by: cshwsdisj 17031 |
Copyright terms: Public domain | W3C validator |