MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwshashlem3 Structured version   Visualization version   GIF version

Theorem cshwshashlem3 17011
Description: If cyclically shifting a word of length being a prime number and not of identical symbols by different numbers of positions, the resulting words are different. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.)
Hypothesis
Ref Expression
cshwshash.0 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
Assertion
Ref Expression
cshwshashlem3 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))
Distinct variable groups:   𝑖,𝐿   𝑖,𝑉   𝑖,𝑊   𝜑,𝑖   𝑖,𝐾

Proof of Theorem cshwshashlem3
StepHypRef Expression
1 elfzoelz 13561 . . . . . 6 (𝐾 ∈ (0..^(♯‘𝑊)) → 𝐾 ∈ ℤ)
21zred 12583 . . . . 5 (𝐾 ∈ (0..^(♯‘𝑊)) → 𝐾 ∈ ℝ)
3 elfzoelz 13561 . . . . . 6 (𝐿 ∈ (0..^(♯‘𝑊)) → 𝐿 ∈ ℤ)
43zred 12583 . . . . 5 (𝐿 ∈ (0..^(♯‘𝑊)) → 𝐿 ∈ ℝ)
5 lttri2 11202 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝐾𝐿 ↔ (𝐾 < 𝐿𝐿 < 𝐾)))
62, 4, 5syl2anr 597 . . . 4 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾𝐿 ↔ (𝐾 < 𝐿𝐿 < 𝐾)))
7 cshwshash.0 . . . . . . . 8 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
87cshwshashlem2 17010 . . . . . . 7 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))
98com12 32 . . . . . 6 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))
1093expia 1121 . . . . 5 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾 < 𝐿 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))))
117cshwshashlem2 17010 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾) → (𝑊 cyclShift 𝐾) ≠ (𝑊 cyclShift 𝐿)))
1211imp 406 . . . . . . . . 9 (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾)) → (𝑊 cyclShift 𝐾) ≠ (𝑊 cyclShift 𝐿))
1312necomd 2984 . . . . . . . 8 (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) ∧ (𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))
1413expcom 413 . . . . . . 7 ((𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))
15143expia 1121 . . . . . 6 ((𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊))) → (𝐿 < 𝐾 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))))
1615ancoms 458 . . . . 5 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐿 < 𝐾 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))))
1710, 16jaod 859 . . . 4 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → ((𝐾 < 𝐿𝐿 < 𝐾) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))))
186, 17sylbid 240 . . 3 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾𝐿 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))))
19183impia 1117 . 2 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾𝐿) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))
2019com12 32 1 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086  wcel 2113  wne 2929  wrex 3057   class class class wbr 5093  cfv 6486  (class class class)co 7352  cr 11012  0cc0 11013   < clt 11153  ..^cfzo 13556  chash 14239  Word cword 14422   cyclShift ccsh 14697  cprime 16584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-hash 14240  df-word 14423  df-concat 14480  df-substr 14551  df-pfx 14581  df-reps 14678  df-csh 14698  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-dvds 16166  df-gcd 16408  df-prm 16585  df-phi 16679
This theorem is referenced by:  cshwsdisj  17012
  Copyright terms: Public domain W3C validator