![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwshashlem3 | Structured version Visualization version GIF version |
Description: If cyclically shifting a word of length being a prime number and not of identical symbols by different numbers of positions, the resulting words are different. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.) |
Ref | Expression |
---|---|
cshwshash.0 | ⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) |
Ref | Expression |
---|---|
cshwshashlem3 | ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ≠ 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoelz 13696 | . . . . . 6 ⊢ (𝐾 ∈ (0..^(♯‘𝑊)) → 𝐾 ∈ ℤ) | |
2 | 1 | zred 12720 | . . . . 5 ⊢ (𝐾 ∈ (0..^(♯‘𝑊)) → 𝐾 ∈ ℝ) |
3 | elfzoelz 13696 | . . . . . 6 ⊢ (𝐿 ∈ (0..^(♯‘𝑊)) → 𝐿 ∈ ℤ) | |
4 | 3 | zred 12720 | . . . . 5 ⊢ (𝐿 ∈ (0..^(♯‘𝑊)) → 𝐿 ∈ ℝ) |
5 | lttri2 11341 | . . . . 5 ⊢ ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝐾 ≠ 𝐿 ↔ (𝐾 < 𝐿 ∨ 𝐿 < 𝐾))) | |
6 | 2, 4, 5 | syl2anr 597 | . . . 4 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾 ≠ 𝐿 ↔ (𝐾 < 𝐿 ∨ 𝐿 < 𝐾))) |
7 | cshwshash.0 | . . . . . . . 8 ⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) | |
8 | 7 | cshwshashlem2 17131 | . . . . . . 7 ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
9 | 8 | com12 32 | . . . . . 6 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
10 | 9 | 3expia 1120 | . . . . 5 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾 < 𝐿 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
11 | 7 | cshwshashlem2 17131 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾) → (𝑊 cyclShift 𝐾) ≠ (𝑊 cyclShift 𝐿))) |
12 | 11 | imp 406 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾)) → (𝑊 cyclShift 𝐾) ≠ (𝑊 cyclShift 𝐿)) |
13 | 12 | necomd 2994 | . . . . . . . 8 ⊢ (((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) ∧ (𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)) |
14 | 13 | expcom 413 | . . . . . . 7 ⊢ ((𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 < 𝐾) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
15 | 14 | 3expia 1120 | . . . . . 6 ⊢ ((𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐿 ∈ (0..^(♯‘𝑊))) → (𝐿 < 𝐾 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
16 | 15 | ancoms 458 | . . . . 5 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐿 < 𝐾 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
17 | 10, 16 | jaod 859 | . . . 4 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → ((𝐾 < 𝐿 ∨ 𝐿 < 𝐾) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
18 | 6, 17 | sylbid 240 | . . 3 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾 ≠ 𝐿 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))) |
19 | 18 | 3impia 1116 | . 2 ⊢ ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ≠ 𝐿) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
20 | 19 | com12 32 | 1 ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ≠ 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 0cc0 11153 < clt 11293 ..^cfzo 13691 ♯chash 14366 Word cword 14549 cyclShift ccsh 14823 ℙcprime 16705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-hash 14367 df-word 14550 df-concat 14606 df-substr 14676 df-pfx 14706 df-reps 14804 df-csh 14824 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-gcd 16529 df-prm 16706 df-phi 16800 |
This theorem is referenced by: cshwsdisj 17133 |
Copyright terms: Public domain | W3C validator |