MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogsub Structured version   Visualization version   GIF version

Theorem atanlogsub 25971
Description: A variation on atanlogadd 25969, to show that √(1 + i𝑧) / √(1 − i𝑧) = √((1 + i𝑧) / (1 − i𝑧)) under more limited conditions. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
atanlogsub ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ran log)

Proof of Theorem atanlogsub
StepHypRef Expression
1 ax-1cn 10860 . . . . . 6 1 ∈ ℂ
2 ax-icn 10861 . . . . . . 7 i ∈ ℂ
3 atandm2 25932 . . . . . . . 8 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
43simp1bi 1143 . . . . . . 7 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
5 mulcl 10886 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
62, 4, 5sylancr 586 . . . . . 6 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
7 addcl 10884 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
81, 6, 7sylancr 586 . . . . 5 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
93simp3bi 1145 . . . . 5 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
108, 9logcld 25631 . . . 4 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
11 subcl 11150 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
121, 6, 11sylancr 586 . . . . 5 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
133simp2bi 1144 . . . . 5 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
1412, 13logcld 25631 . . . 4 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
1510, 14subcld 11262 . . 3 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ)
1615adantr 480 . 2 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ)
174recld 14833 . . . . . . 7 (𝐴 ∈ dom arctan → (ℜ‘𝐴) ∈ ℝ)
18 0re 10908 . . . . . . 7 0 ∈ ℝ
19 lttri2 10988 . . . . . . 7 (((ℜ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝐴) ≠ 0 ↔ ((ℜ‘𝐴) < 0 ∨ 0 < (ℜ‘𝐴))))
2017, 18, 19sylancl 585 . . . . . 6 (𝐴 ∈ dom arctan → ((ℜ‘𝐴) ≠ 0 ↔ ((ℜ‘𝐴) < 0 ∨ 0 < (ℜ‘𝐴))))
2120biimpa 476 . . . . 5 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) < 0 ∨ 0 < (ℜ‘𝐴)))
2215imnegd 14849 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (ℑ‘-((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
2310, 14negsubdi2d 11278 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
24 mulneg2 11342 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
252, 4, 24sylancr 586 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → (i · -𝐴) = -(i · 𝐴))
2625oveq2d 7271 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 + -(i · 𝐴)))
27 negsub 11199 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
281, 6, 27sylancr 586 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
2926, 28eqtrd 2778 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 − (i · 𝐴)))
3029fveq2d 6760 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (log‘(1 + (i · -𝐴))) = (log‘(1 − (i · 𝐴))))
3125oveq2d 7271 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (1 − (i · -𝐴)) = (1 − -(i · 𝐴)))
32 subneg 11200 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
331, 6, 32sylancr 586 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
3431, 33eqtrd 2778 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (1 − (i · -𝐴)) = (1 + (i · 𝐴)))
3534fveq2d 6760 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (log‘(1 − (i · -𝐴))) = (log‘(1 + (i · 𝐴))))
3630, 35oveq12d 7273 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴)))) = ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
3723, 36eqtr4d 2781 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) = ((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴)))))
3837fveq2d 6760 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (ℑ‘-((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))))
3922, 38eqtr3d 2780 . . . . . . . . 9 (𝐴 ∈ dom arctan → -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))))
4039adantr 480 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))))
41 atandmneg 25961 . . . . . . . . . 10 (𝐴 ∈ dom arctan → -𝐴 ∈ dom arctan)
4217lt0neg1d 11474 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((ℜ‘𝐴) < 0 ↔ 0 < -(ℜ‘𝐴)))
4342biimpa 476 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → 0 < -(ℜ‘𝐴))
444adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → 𝐴 ∈ ℂ)
4544renegd 14848 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → (ℜ‘-𝐴) = -(ℜ‘𝐴))
4643, 45breqtrrd 5098 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → 0 < (ℜ‘-𝐴))
47 atanlogsublem 25970 . . . . . . . . . 10 ((-𝐴 ∈ dom arctan ∧ 0 < (ℜ‘-𝐴)) → (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))) ∈ (-π(,)π))
4841, 46, 47syl2an2r 681 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))) ∈ (-π(,)π))
49 picn 25521 . . . . . . . . . . 11 π ∈ ℂ
5049negnegi 11221 . . . . . . . . . 10 --π = π
5150oveq2i 7266 . . . . . . . . 9 (-π(,)--π) = (-π(,)π)
5248, 51eleqtrrdi 2850 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))) ∈ (-π(,)--π))
5340, 52eqeltrd 2839 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)--π))
54 pire 25520 . . . . . . . . 9 π ∈ ℝ
5554renegcli 11212 . . . . . . . 8 -π ∈ ℝ
5615adantr 480 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ)
5756imcld 14834 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ ℝ)
58 iooneg 13132 . . . . . . . 8 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ ℝ) → ((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π) ↔ -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)--π)))
5955, 54, 57, 58mp3an12i 1463 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → ((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π) ↔ -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)--π)))
6053, 59mpbird 256 . . . . . 6 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
61 atanlogsublem 25970 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
6260, 61jaodan 954 . . . . 5 ((𝐴 ∈ dom arctan ∧ ((ℜ‘𝐴) < 0 ∨ 0 < (ℜ‘𝐴))) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
6321, 62syldan 590 . . . 4 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
64 eliooord 13067 . . . 4 ((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π) → (-π < (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∧ (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) < π))
6563, 64syl 17 . . 3 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → (-π < (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∧ (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) < π))
6665simpld 494 . 2 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → -π < (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
6765simprd 495 . . 3 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) < π)
6816imcld 14834 . . . 4 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ ℝ)
69 ltle 10994 . . . 4 (((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) < π → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ≤ π))
7068, 54, 69sylancl 585 . . 3 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) < π → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ≤ π))
7167, 70mpd 15 . 2 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ≤ π)
72 ellogrn 25620 . 2 (((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ran log ↔ (((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ ∧ -π < (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∧ (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ≤ π))
7316, 66, 71, 72syl3anbrc 1341 1 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ran log)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  dom cdm 5580  ran crn 5581  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803  ici 10804   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136  (,)cioo 13008  cre 14736  cim 14737  πcpi 15704  logclog 25615  arctancatan 25919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-atan 25922
This theorem is referenced by:  atantan  25978
  Copyright terms: Public domain W3C validator