MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogsub Structured version   Visualization version   GIF version

Theorem atanlogsub 25799
Description: A variation on atanlogadd 25797, to show that √(1 + i𝑧) / √(1 − i𝑧) = √((1 + i𝑧) / (1 − i𝑧)) under more limited conditions. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
atanlogsub ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ran log)

Proof of Theorem atanlogsub
StepHypRef Expression
1 ax-1cn 10787 . . . . . 6 1 ∈ ℂ
2 ax-icn 10788 . . . . . . 7 i ∈ ℂ
3 atandm2 25760 . . . . . . . 8 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
43simp1bi 1147 . . . . . . 7 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
5 mulcl 10813 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
62, 4, 5sylancr 590 . . . . . 6 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
7 addcl 10811 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
81, 6, 7sylancr 590 . . . . 5 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
93simp3bi 1149 . . . . 5 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
108, 9logcld 25459 . . . 4 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
11 subcl 11077 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
121, 6, 11sylancr 590 . . . . 5 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
133simp2bi 1148 . . . . 5 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
1412, 13logcld 25459 . . . 4 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
1510, 14subcld 11189 . . 3 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ)
1615adantr 484 . 2 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ)
174recld 14757 . . . . . . 7 (𝐴 ∈ dom arctan → (ℜ‘𝐴) ∈ ℝ)
18 0re 10835 . . . . . . 7 0 ∈ ℝ
19 lttri2 10915 . . . . . . 7 (((ℜ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝐴) ≠ 0 ↔ ((ℜ‘𝐴) < 0 ∨ 0 < (ℜ‘𝐴))))
2017, 18, 19sylancl 589 . . . . . 6 (𝐴 ∈ dom arctan → ((ℜ‘𝐴) ≠ 0 ↔ ((ℜ‘𝐴) < 0 ∨ 0 < (ℜ‘𝐴))))
2120biimpa 480 . . . . 5 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) < 0 ∨ 0 < (ℜ‘𝐴)))
2215imnegd 14773 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (ℑ‘-((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
2310, 14negsubdi2d 11205 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
24 mulneg2 11269 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
252, 4, 24sylancr 590 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → (i · -𝐴) = -(i · 𝐴))
2625oveq2d 7229 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 + -(i · 𝐴)))
27 negsub 11126 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
281, 6, 27sylancr 590 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
2926, 28eqtrd 2777 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 − (i · 𝐴)))
3029fveq2d 6721 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (log‘(1 + (i · -𝐴))) = (log‘(1 − (i · 𝐴))))
3125oveq2d 7229 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (1 − (i · -𝐴)) = (1 − -(i · 𝐴)))
32 subneg 11127 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
331, 6, 32sylancr 590 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
3431, 33eqtrd 2777 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (1 − (i · -𝐴)) = (1 + (i · 𝐴)))
3534fveq2d 6721 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (log‘(1 − (i · -𝐴))) = (log‘(1 + (i · 𝐴))))
3630, 35oveq12d 7231 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴)))) = ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
3723, 36eqtr4d 2780 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) = ((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴)))))
3837fveq2d 6721 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (ℑ‘-((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))))
3922, 38eqtr3d 2779 . . . . . . . . 9 (𝐴 ∈ dom arctan → -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))))
4039adantr 484 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))))
41 atandmneg 25789 . . . . . . . . . 10 (𝐴 ∈ dom arctan → -𝐴 ∈ dom arctan)
4217lt0neg1d 11401 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((ℜ‘𝐴) < 0 ↔ 0 < -(ℜ‘𝐴)))
4342biimpa 480 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → 0 < -(ℜ‘𝐴))
444adantr 484 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → 𝐴 ∈ ℂ)
4544renegd 14772 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → (ℜ‘-𝐴) = -(ℜ‘𝐴))
4643, 45breqtrrd 5081 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → 0 < (ℜ‘-𝐴))
47 atanlogsublem 25798 . . . . . . . . . 10 ((-𝐴 ∈ dom arctan ∧ 0 < (ℜ‘-𝐴)) → (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))) ∈ (-π(,)π))
4841, 46, 47syl2an2r 685 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))) ∈ (-π(,)π))
49 picn 25349 . . . . . . . . . . 11 π ∈ ℂ
5049negnegi 11148 . . . . . . . . . 10 --π = π
5150oveq2i 7224 . . . . . . . . 9 (-π(,)--π) = (-π(,)π)
5248, 51eleqtrrdi 2849 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))) ∈ (-π(,)--π))
5340, 52eqeltrd 2838 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)--π))
54 pire 25348 . . . . . . . . 9 π ∈ ℝ
5554renegcli 11139 . . . . . . . 8 -π ∈ ℝ
5615adantr 484 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ)
5756imcld 14758 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ ℝ)
58 iooneg 13059 . . . . . . . 8 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ ℝ) → ((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π) ↔ -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)--π)))
5955, 54, 57, 58mp3an12i 1467 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → ((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π) ↔ -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)--π)))
6053, 59mpbird 260 . . . . . 6 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
61 atanlogsublem 25798 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
6260, 61jaodan 958 . . . . 5 ((𝐴 ∈ dom arctan ∧ ((ℜ‘𝐴) < 0 ∨ 0 < (ℜ‘𝐴))) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
6321, 62syldan 594 . . . 4 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
64 eliooord 12994 . . . 4 ((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π) → (-π < (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∧ (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) < π))
6563, 64syl 17 . . 3 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → (-π < (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∧ (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) < π))
6665simpld 498 . 2 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → -π < (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
6765simprd 499 . . 3 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) < π)
6816imcld 14758 . . . 4 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ ℝ)
69 ltle 10921 . . . 4 (((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) < π → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ≤ π))
7068, 54, 69sylancl 589 . . 3 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) < π → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ≤ π))
7167, 70mpd 15 . 2 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ≤ π)
72 ellogrn 25448 . 2 (((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ran log ↔ (((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ ∧ -π < (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∧ (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ≤ π))
7316, 66, 71, 72syl3anbrc 1345 1 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ran log)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110  wne 2940   class class class wbr 5053  dom cdm 5551  ran crn 5552  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730  ici 10731   + caddc 10732   · cmul 10734   < clt 10867  cle 10868  cmin 11062  -cneg 11063  (,)cioo 12935  cre 14660  cim 14661  πcpi 15628  logclog 25443  arctancatan 25747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-tan 15633  df-pi 15634  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764  df-log 25445  df-atan 25750
This theorem is referenced by:  atantan  25806
  Copyright terms: Public domain W3C validator