MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogsub Structured version   Visualization version   GIF version

Theorem atanlogsub 25163
Description: A variation on atanlogadd 25161, to show that √(1 + i𝑧) / √(1 − i𝑧) = √((1 + i𝑧) / (1 − i𝑧)) under more limited conditions. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
atanlogsub ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ran log)

Proof of Theorem atanlogsub
StepHypRef Expression
1 ax-1cn 10430 . . . . . 6 1 ∈ ℂ
2 ax-icn 10431 . . . . . . 7 i ∈ ℂ
3 atandm2 25124 . . . . . . . 8 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
43simp1bi 1136 . . . . . . 7 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
5 mulcl 10456 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
62, 4, 5sylancr 587 . . . . . 6 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
7 addcl 10454 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
81, 6, 7sylancr 587 . . . . 5 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
93simp3bi 1138 . . . . 5 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
108, 9logcld 24823 . . . 4 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
11 subcl 10721 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
121, 6, 11sylancr 587 . . . . 5 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
133simp2bi 1137 . . . . 5 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
1412, 13logcld 24823 . . . 4 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
1510, 14subcld 10834 . . 3 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ)
1615adantr 481 . 2 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ)
174recld 14375 . . . . . . 7 (𝐴 ∈ dom arctan → (ℜ‘𝐴) ∈ ℝ)
18 0re 10478 . . . . . . 7 0 ∈ ℝ
19 lttri2 10559 . . . . . . 7 (((ℜ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝐴) ≠ 0 ↔ ((ℜ‘𝐴) < 0 ∨ 0 < (ℜ‘𝐴))))
2017, 18, 19sylancl 586 . . . . . 6 (𝐴 ∈ dom arctan → ((ℜ‘𝐴) ≠ 0 ↔ ((ℜ‘𝐴) < 0 ∨ 0 < (ℜ‘𝐴))))
2120biimpa 477 . . . . 5 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) < 0 ∨ 0 < (ℜ‘𝐴)))
2215imnegd 14391 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (ℑ‘-((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
2310, 14negsubdi2d 10850 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
24 mulneg2 10914 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
252, 4, 24sylancr 587 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → (i · -𝐴) = -(i · 𝐴))
2625oveq2d 7023 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 + -(i · 𝐴)))
27 negsub 10771 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
281, 6, 27sylancr 587 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
2926, 28eqtrd 2829 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 − (i · 𝐴)))
3029fveq2d 6534 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (log‘(1 + (i · -𝐴))) = (log‘(1 − (i · 𝐴))))
3125oveq2d 7023 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (1 − (i · -𝐴)) = (1 − -(i · 𝐴)))
32 subneg 10772 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
331, 6, 32sylancr 587 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
3431, 33eqtrd 2829 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (1 − (i · -𝐴)) = (1 + (i · 𝐴)))
3534fveq2d 6534 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (log‘(1 − (i · -𝐴))) = (log‘(1 + (i · 𝐴))))
3630, 35oveq12d 7025 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴)))) = ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
3723, 36eqtr4d 2832 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → -((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) = ((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴)))))
3837fveq2d 6534 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (ℑ‘-((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))))
3922, 38eqtr3d 2831 . . . . . . . . 9 (𝐴 ∈ dom arctan → -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))))
4039adantr 481 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))))
41 atandmneg 25153 . . . . . . . . . 10 (𝐴 ∈ dom arctan → -𝐴 ∈ dom arctan)
4217lt0neg1d 11046 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((ℜ‘𝐴) < 0 ↔ 0 < -(ℜ‘𝐴)))
4342biimpa 477 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → 0 < -(ℜ‘𝐴))
444adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → 𝐴 ∈ ℂ)
4544renegd 14390 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → (ℜ‘-𝐴) = -(ℜ‘𝐴))
4643, 45breqtrrd 4984 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → 0 < (ℜ‘-𝐴))
47 atanlogsublem 25162 . . . . . . . . . 10 ((-𝐴 ∈ dom arctan ∧ 0 < (ℜ‘-𝐴)) → (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))) ∈ (-π(,)π))
4841, 46, 47syl2an2r 681 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))) ∈ (-π(,)π))
49 picn 24716 . . . . . . . . . . 11 π ∈ ℂ
5049negnegi 10793 . . . . . . . . . 10 --π = π
5150oveq2i 7018 . . . . . . . . 9 (-π(,)--π) = (-π(,)π)
5248, 51syl6eleqr 2892 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → (ℑ‘((log‘(1 + (i · -𝐴))) − (log‘(1 − (i · -𝐴))))) ∈ (-π(,)--π))
5340, 52eqeltrd 2881 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)--π))
54 pire 24715 . . . . . . . . 9 π ∈ ℝ
5554renegcli 10784 . . . . . . . 8 -π ∈ ℝ
5615adantr 481 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ)
5756imcld 14376 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ ℝ)
58 iooneg 12696 . . . . . . . 8 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ ℝ) → ((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π) ↔ -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)--π)))
5955, 54, 57, 58mp3an12i 1455 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → ((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π) ↔ -(ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)--π)))
6053, 59mpbird 258 . . . . . 6 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) < 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
61 atanlogsublem 25162 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
6260, 61jaodan 950 . . . . 5 ((𝐴 ∈ dom arctan ∧ ((ℜ‘𝐴) < 0 ∨ 0 < (ℜ‘𝐴))) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
6321, 62syldan 591 . . . 4 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
64 eliooord 12635 . . . 4 ((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π) → (-π < (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∧ (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) < π))
6563, 64syl 17 . . 3 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → (-π < (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∧ (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) < π))
6665simpld 495 . 2 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → -π < (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
6765simprd 496 . . 3 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) < π)
6816imcld 14376 . . . 4 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ ℝ)
69 ltle 10565 . . . 4 (((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) < π → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ≤ π))
7068, 54, 69sylancl 586 . . 3 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) < π → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ≤ π))
7167, 70mpd 15 . 2 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ≤ π)
72 ellogrn 24812 . 2 (((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ran log ↔ (((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ℂ ∧ -π < (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∧ (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ≤ π))
7316, 66, 71, 72syl3anbrc 1334 1 ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ran log)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 842   = wceq 1520  wcel 2079  wne 2982   class class class wbr 4956  dom cdm 5435  ran crn 5436  cfv 6217  (class class class)co 7007  cc 10370  cr 10371  0cc0 10372  1c1 10373  ici 10374   + caddc 10375   · cmul 10377   < clt 10510  cle 10511  cmin 10706  -cneg 10707  (,)cioo 12577  cre 14278  cim 14279  πcpi 15241  logclog 24807  arctancatan 25111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-inf2 8939  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450  ax-addf 10451  ax-mulf 10452
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-fal 1533  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-iin 4822  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-of 7258  df-om 7428  df-1st 7536  df-2nd 7537  df-supp 7673  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-2o 7945  df-oadd 7948  df-er 8130  df-map 8249  df-pm 8250  df-ixp 8301  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-fsupp 8670  df-fi 8711  df-sup 8742  df-inf 8743  df-oi 8810  df-card 9203  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-4 11539  df-5 11540  df-6 11541  df-7 11542  df-8 11543  df-9 11544  df-n0 11735  df-z 11819  df-dec 11937  df-uz 12083  df-q 12187  df-rp 12229  df-xneg 12346  df-xadd 12347  df-xmul 12348  df-ioo 12581  df-ioc 12582  df-ico 12583  df-icc 12584  df-fz 12732  df-fzo 12873  df-fl 13000  df-mod 13076  df-seq 13208  df-exp 13268  df-fac 13472  df-bc 13501  df-hash 13529  df-shft 14248  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417  df-limsup 14650  df-clim 14667  df-rlim 14668  df-sum 14865  df-ef 15242  df-sin 15244  df-cos 15245  df-tan 15246  df-pi 15247  df-struct 16302  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-ress 16308  df-plusg 16395  df-mulr 16396  df-starv 16397  df-sca 16398  df-vsca 16399  df-ip 16400  df-tset 16401  df-ple 16402  df-ds 16404  df-unif 16405  df-hom 16406  df-cco 16407  df-rest 16513  df-topn 16514  df-0g 16532  df-gsum 16533  df-topgen 16534  df-pt 16535  df-prds 16538  df-xrs 16592  df-qtop 16597  df-imas 16598  df-xps 16600  df-mre 16674  df-mrc 16675  df-acs 16677  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-submnd 17763  df-mulg 17970  df-cntz 18176  df-cmn 18623  df-psmet 20207  df-xmet 20208  df-met 20209  df-bl 20210  df-mopn 20211  df-fbas 20212  df-fg 20213  df-cnfld 20216  df-top 21174  df-topon 21191  df-topsp 21213  df-bases 21226  df-cld 21299  df-ntr 21300  df-cls 21301  df-nei 21378  df-lp 21416  df-perf 21417  df-cn 21507  df-cnp 21508  df-haus 21595  df-tx 21842  df-hmeo 22035  df-fil 22126  df-fm 22218  df-flim 22219  df-flf 22220  df-xms 22601  df-ms 22602  df-tms 22603  df-cncf 23157  df-limc 24135  df-dv 24136  df-log 24809  df-atan 25114
This theorem is referenced by:  atantan  25170
  Copyright terms: Public domain W3C validator