MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfienlem2 Structured version   Visualization version   GIF version

Theorem mapfienlem2 9165
Description: Lemma 2 for mapfien 9167. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.)
Hypotheses
Ref Expression
mapfien.s 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
mapfien.t 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
mapfien.w 𝑊 = (𝐺𝑍)
mapfien.f (𝜑𝐹:𝐶1-1-onto𝐴)
mapfien.g (𝜑𝐺:𝐵1-1-onto𝐷)
mapfien.a (𝜑𝐴𝑈)
mapfien.b (𝜑𝐵𝑉)
mapfien.c (𝜑𝐶𝑋)
mapfien.d (𝜑𝐷𝑌)
mapfien.z (𝜑𝑍𝐵)
Assertion
Ref Expression
mapfienlem2 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑔,𝐹   𝑔,𝐺,𝑥   𝜑,𝑔   𝑥,𝐷   𝑆,𝑔   𝑇,𝑔   𝑥,𝑊   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑔)   𝐵(𝑔)   𝐶(𝑔)   𝐷(𝑔)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥,𝑔)   𝑉(𝑥,𝑔)   𝑊(𝑔)   𝑋(𝑥,𝑔)   𝑌(𝑥,𝑔)   𝑍(𝑔)

Proof of Theorem mapfienlem2
StepHypRef Expression
1 mapfien.z . . . 4 (𝜑𝑍𝐵)
21adantr 481 . . 3 ((𝜑𝑔𝑇) → 𝑍𝐵)
3 mapfien.w . . . . 5 𝑊 = (𝐺𝑍)
4 mapfien.g . . . . . . 7 (𝜑𝐺:𝐵1-1-onto𝐷)
5 f1of 6716 . . . . . . 7 (𝐺:𝐵1-1-onto𝐷𝐺:𝐵𝐷)
64, 5syl 17 . . . . . 6 (𝜑𝐺:𝐵𝐷)
76, 1ffvelrnd 6962 . . . . 5 (𝜑 → (𝐺𝑍) ∈ 𝐷)
83, 7eqeltrid 2843 . . . 4 (𝜑𝑊𝐷)
98adantr 481 . . 3 ((𝜑𝑔𝑇) → 𝑊𝐷)
10 elrabi 3618 . . . . . 6 (𝑔 ∈ {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊} → 𝑔 ∈ (𝐷m 𝐶))
11 elmapi 8637 . . . . . 6 (𝑔 ∈ (𝐷m 𝐶) → 𝑔:𝐶𝐷)
1210, 11syl 17 . . . . 5 (𝑔 ∈ {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊} → 𝑔:𝐶𝐷)
13 mapfien.t . . . . 5 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
1412, 13eleq2s 2857 . . . 4 (𝑔𝑇𝑔:𝐶𝐷)
1514adantl 482 . . 3 ((𝜑𝑔𝑇) → 𝑔:𝐶𝐷)
16 f1ocnv 6728 . . . . 5 (𝐺:𝐵1-1-onto𝐷𝐺:𝐷1-1-onto𝐵)
17 f1of 6716 . . . . 5 (𝐺:𝐷1-1-onto𝐵𝐺:𝐷𝐵)
184, 16, 173syl 18 . . . 4 (𝜑𝐺:𝐷𝐵)
1918adantr 481 . . 3 ((𝜑𝑔𝑇) → 𝐺:𝐷𝐵)
20 ssidd 3944 . . 3 ((𝜑𝑔𝑇) → 𝐷𝐷)
21 mapfien.c . . . 4 (𝜑𝐶𝑋)
2221adantr 481 . . 3 ((𝜑𝑔𝑇) → 𝐶𝑋)
23 mapfien.d . . . 4 (𝜑𝐷𝑌)
2423adantr 481 . . 3 ((𝜑𝑔𝑇) → 𝐷𝑌)
25 breq1 5077 . . . . . . 7 (𝑥 = 𝑔 → (𝑥 finSupp 𝑊𝑔 finSupp 𝑊))
2625elrab 3624 . . . . . 6 (𝑔 ∈ {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊} ↔ (𝑔 ∈ (𝐷m 𝐶) ∧ 𝑔 finSupp 𝑊))
2726simprbi 497 . . . . 5 (𝑔 ∈ {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊} → 𝑔 finSupp 𝑊)
2827, 13eleq2s 2857 . . . 4 (𝑔𝑇𝑔 finSupp 𝑊)
2928adantl 482 . . 3 ((𝜑𝑔𝑇) → 𝑔 finSupp 𝑊)
304, 1jca 512 . . . . . 6 (𝜑 → (𝐺:𝐵1-1-onto𝐷𝑍𝐵))
313eqcomi 2747 . . . . . 6 (𝐺𝑍) = 𝑊
3230, 31jctir 521 . . . . 5 (𝜑 → ((𝐺:𝐵1-1-onto𝐷𝑍𝐵) ∧ (𝐺𝑍) = 𝑊))
3332adantr 481 . . . 4 ((𝜑𝑔𝑇) → ((𝐺:𝐵1-1-onto𝐷𝑍𝐵) ∧ (𝐺𝑍) = 𝑊))
34 f1ocnvfv 7150 . . . . 5 ((𝐺:𝐵1-1-onto𝐷𝑍𝐵) → ((𝐺𝑍) = 𝑊 → (𝐺𝑊) = 𝑍))
3534imp 407 . . . 4 (((𝐺:𝐵1-1-onto𝐷𝑍𝐵) ∧ (𝐺𝑍) = 𝑊) → (𝐺𝑊) = 𝑍)
3633, 35syl 17 . . 3 ((𝜑𝑔𝑇) → (𝐺𝑊) = 𝑍)
372, 9, 15, 19, 20, 22, 24, 29, 36fsuppcor 9163 . 2 ((𝜑𝑔𝑇) → (𝐺𝑔) finSupp 𝑍)
38 mapfien.f . . . 4 (𝜑𝐹:𝐶1-1-onto𝐴)
39 f1ocnv 6728 . . . 4 (𝐹:𝐶1-1-onto𝐴𝐹:𝐴1-1-onto𝐶)
40 f1of1 6715 . . . 4 (𝐹:𝐴1-1-onto𝐶𝐹:𝐴1-1𝐶)
4138, 39, 403syl 18 . . 3 (𝜑𝐹:𝐴1-1𝐶)
4241adantr 481 . 2 ((𝜑𝑔𝑇) → 𝐹:𝐴1-1𝐶)
43 mapfien.b . . . . 5 (𝜑𝐵𝑉)
446, 43jca 512 . . . 4 (𝜑 → (𝐺:𝐵𝐷𝐵𝑉))
45 fex 7102 . . . 4 ((𝐺:𝐵𝐷𝐵𝑉) → 𝐺 ∈ V)
46 cnvexg 7771 . . . 4 (𝐺 ∈ V → 𝐺 ∈ V)
4744, 45, 463syl 18 . . 3 (𝜑𝐺 ∈ V)
48 coexg 7776 . . 3 ((𝐺 ∈ V ∧ 𝑔𝑇) → (𝐺𝑔) ∈ V)
4947, 48sylan 580 . 2 ((𝜑𝑔𝑇) → (𝐺𝑔) ∈ V)
5037, 42, 2, 49fsuppco 9161 1 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432   class class class wbr 5074  ccnv 5588  ccom 5593  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  m cmap 8615   finSupp cfsupp 9128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-1o 8297  df-map 8617  df-en 8734  df-fin 8737  df-fsupp 9129
This theorem is referenced by:  mapfienlem3  9166
  Copyright terms: Public domain W3C validator