Proof of Theorem mapfienlem2
| Step | Hyp | Ref
| Expression |
| 1 | | mapfien.z |
. . . 4
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → 𝑍 ∈ 𝐵) |
| 3 | | mapfien.w |
. . . . 5
⊢ 𝑊 = (𝐺‘𝑍) |
| 4 | | mapfien.g |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) |
| 5 | | f1of 6848 |
. . . . . . 7
⊢ (𝐺:𝐵–1-1-onto→𝐷 → 𝐺:𝐵⟶𝐷) |
| 6 | 4, 5 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺:𝐵⟶𝐷) |
| 7 | 6, 1 | ffvelcdmd 7105 |
. . . . 5
⊢ (𝜑 → (𝐺‘𝑍) ∈ 𝐷) |
| 8 | 3, 7 | eqeltrid 2845 |
. . . 4
⊢ (𝜑 → 𝑊 ∈ 𝐷) |
| 9 | 8 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → 𝑊 ∈ 𝐷) |
| 10 | | elrabi 3687 |
. . . . . 6
⊢ (𝑔 ∈ {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} → 𝑔 ∈ (𝐷 ↑m 𝐶)) |
| 11 | | elmapi 8889 |
. . . . . 6
⊢ (𝑔 ∈ (𝐷 ↑m 𝐶) → 𝑔:𝐶⟶𝐷) |
| 12 | 10, 11 | syl 17 |
. . . . 5
⊢ (𝑔 ∈ {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} → 𝑔:𝐶⟶𝐷) |
| 13 | | mapfien.t |
. . . . 5
⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} |
| 14 | 12, 13 | eleq2s 2859 |
. . . 4
⊢ (𝑔 ∈ 𝑇 → 𝑔:𝐶⟶𝐷) |
| 15 | 14 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → 𝑔:𝐶⟶𝐷) |
| 16 | | f1ocnv 6860 |
. . . . 5
⊢ (𝐺:𝐵–1-1-onto→𝐷 → ◡𝐺:𝐷–1-1-onto→𝐵) |
| 17 | | f1of 6848 |
. . . . 5
⊢ (◡𝐺:𝐷–1-1-onto→𝐵 → ◡𝐺:𝐷⟶𝐵) |
| 18 | 4, 16, 17 | 3syl 18 |
. . . 4
⊢ (𝜑 → ◡𝐺:𝐷⟶𝐵) |
| 19 | 18 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → ◡𝐺:𝐷⟶𝐵) |
| 20 | | ssidd 4007 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → 𝐷 ⊆ 𝐷) |
| 21 | | mapfien.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| 22 | 21 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → 𝐶 ∈ 𝑋) |
| 23 | | mapfien.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑌) |
| 24 | 23 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → 𝐷 ∈ 𝑌) |
| 25 | | breq1 5146 |
. . . . . . 7
⊢ (𝑥 = 𝑔 → (𝑥 finSupp 𝑊 ↔ 𝑔 finSupp 𝑊)) |
| 26 | 25 | elrab 3692 |
. . . . . 6
⊢ (𝑔 ∈ {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} ↔ (𝑔 ∈ (𝐷 ↑m 𝐶) ∧ 𝑔 finSupp 𝑊)) |
| 27 | 26 | simprbi 496 |
. . . . 5
⊢ (𝑔 ∈ {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} → 𝑔 finSupp 𝑊) |
| 28 | 27, 13 | eleq2s 2859 |
. . . 4
⊢ (𝑔 ∈ 𝑇 → 𝑔 finSupp 𝑊) |
| 29 | 28 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → 𝑔 finSupp 𝑊) |
| 30 | 4, 1 | jca 511 |
. . . . . 6
⊢ (𝜑 → (𝐺:𝐵–1-1-onto→𝐷 ∧ 𝑍 ∈ 𝐵)) |
| 31 | 3 | eqcomi 2746 |
. . . . . 6
⊢ (𝐺‘𝑍) = 𝑊 |
| 32 | 30, 31 | jctir 520 |
. . . . 5
⊢ (𝜑 → ((𝐺:𝐵–1-1-onto→𝐷 ∧ 𝑍 ∈ 𝐵) ∧ (𝐺‘𝑍) = 𝑊)) |
| 33 | 32 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → ((𝐺:𝐵–1-1-onto→𝐷 ∧ 𝑍 ∈ 𝐵) ∧ (𝐺‘𝑍) = 𝑊)) |
| 34 | | f1ocnvfv 7298 |
. . . . 5
⊢ ((𝐺:𝐵–1-1-onto→𝐷 ∧ 𝑍 ∈ 𝐵) → ((𝐺‘𝑍) = 𝑊 → (◡𝐺‘𝑊) = 𝑍)) |
| 35 | 34 | imp 406 |
. . . 4
⊢ (((𝐺:𝐵–1-1-onto→𝐷 ∧ 𝑍 ∈ 𝐵) ∧ (𝐺‘𝑍) = 𝑊) → (◡𝐺‘𝑊) = 𝑍) |
| 36 | 33, 35 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → (◡𝐺‘𝑊) = 𝑍) |
| 37 | 2, 9, 15, 19, 20, 22, 24, 29, 36 | fsuppcor 9444 |
. 2
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → (◡𝐺 ∘ 𝑔) finSupp 𝑍) |
| 38 | | mapfien.f |
. . . 4
⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) |
| 39 | | f1ocnv 6860 |
. . . 4
⊢ (𝐹:𝐶–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐶) |
| 40 | | f1of1 6847 |
. . . 4
⊢ (◡𝐹:𝐴–1-1-onto→𝐶 → ◡𝐹:𝐴–1-1→𝐶) |
| 41 | 38, 39, 40 | 3syl 18 |
. . 3
⊢ (𝜑 → ◡𝐹:𝐴–1-1→𝐶) |
| 42 | 41 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → ◡𝐹:𝐴–1-1→𝐶) |
| 43 | | mapfien.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| 44 | 6, 43 | jca 511 |
. . . 4
⊢ (𝜑 → (𝐺:𝐵⟶𝐷 ∧ 𝐵 ∈ 𝑉)) |
| 45 | | fex 7246 |
. . . 4
⊢ ((𝐺:𝐵⟶𝐷 ∧ 𝐵 ∈ 𝑉) → 𝐺 ∈ V) |
| 46 | | cnvexg 7946 |
. . . 4
⊢ (𝐺 ∈ V → ◡𝐺 ∈ V) |
| 47 | 44, 45, 46 | 3syl 18 |
. . 3
⊢ (𝜑 → ◡𝐺 ∈ V) |
| 48 | | coexg 7951 |
. . 3
⊢ ((◡𝐺 ∈ V ∧ 𝑔 ∈ 𝑇) → (◡𝐺 ∘ 𝑔) ∈ V) |
| 49 | 47, 48 | sylan 580 |
. 2
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → (◡𝐺 ∘ 𝑔) ∈ V) |
| 50 | 37, 42, 2, 49 | fsuppco 9442 |
1
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → ((◡𝐺 ∘ 𝑔) ∘ ◡𝐹) finSupp 𝑍) |