MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfienlem2 Structured version   Visualization version   GIF version

Theorem mapfienlem2 9403
Description: Lemma 2 for mapfien 9405. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.)
Hypotheses
Ref Expression
mapfien.s 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
mapfien.t 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
mapfien.w 𝑊 = (𝐺𝑍)
mapfien.f (𝜑𝐹:𝐶1-1-onto𝐴)
mapfien.g (𝜑𝐺:𝐵1-1-onto𝐷)
mapfien.a (𝜑𝐴𝑈)
mapfien.b (𝜑𝐵𝑉)
mapfien.c (𝜑𝐶𝑋)
mapfien.d (𝜑𝐷𝑌)
mapfien.z (𝜑𝑍𝐵)
Assertion
Ref Expression
mapfienlem2 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑔,𝐹   𝑔,𝐺,𝑥   𝜑,𝑔   𝑥,𝐷   𝑆,𝑔   𝑇,𝑔   𝑥,𝑊   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑔)   𝐵(𝑔)   𝐶(𝑔)   𝐷(𝑔)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥,𝑔)   𝑉(𝑥,𝑔)   𝑊(𝑔)   𝑋(𝑥,𝑔)   𝑌(𝑥,𝑔)   𝑍(𝑔)

Proof of Theorem mapfienlem2
StepHypRef Expression
1 mapfien.z . . . 4 (𝜑𝑍𝐵)
21adantr 479 . . 3 ((𝜑𝑔𝑇) → 𝑍𝐵)
3 mapfien.w . . . . 5 𝑊 = (𝐺𝑍)
4 mapfien.g . . . . . . 7 (𝜑𝐺:𝐵1-1-onto𝐷)
5 f1of 6832 . . . . . . 7 (𝐺:𝐵1-1-onto𝐷𝐺:𝐵𝐷)
64, 5syl 17 . . . . . 6 (𝜑𝐺:𝐵𝐷)
76, 1ffvelcdmd 7086 . . . . 5 (𝜑 → (𝐺𝑍) ∈ 𝐷)
83, 7eqeltrid 2835 . . . 4 (𝜑𝑊𝐷)
98adantr 479 . . 3 ((𝜑𝑔𝑇) → 𝑊𝐷)
10 elrabi 3676 . . . . . 6 (𝑔 ∈ {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊} → 𝑔 ∈ (𝐷m 𝐶))
11 elmapi 8845 . . . . . 6 (𝑔 ∈ (𝐷m 𝐶) → 𝑔:𝐶𝐷)
1210, 11syl 17 . . . . 5 (𝑔 ∈ {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊} → 𝑔:𝐶𝐷)
13 mapfien.t . . . . 5 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
1412, 13eleq2s 2849 . . . 4 (𝑔𝑇𝑔:𝐶𝐷)
1514adantl 480 . . 3 ((𝜑𝑔𝑇) → 𝑔:𝐶𝐷)
16 f1ocnv 6844 . . . . 5 (𝐺:𝐵1-1-onto𝐷𝐺:𝐷1-1-onto𝐵)
17 f1of 6832 . . . . 5 (𝐺:𝐷1-1-onto𝐵𝐺:𝐷𝐵)
184, 16, 173syl 18 . . . 4 (𝜑𝐺:𝐷𝐵)
1918adantr 479 . . 3 ((𝜑𝑔𝑇) → 𝐺:𝐷𝐵)
20 ssidd 4004 . . 3 ((𝜑𝑔𝑇) → 𝐷𝐷)
21 mapfien.c . . . 4 (𝜑𝐶𝑋)
2221adantr 479 . . 3 ((𝜑𝑔𝑇) → 𝐶𝑋)
23 mapfien.d . . . 4 (𝜑𝐷𝑌)
2423adantr 479 . . 3 ((𝜑𝑔𝑇) → 𝐷𝑌)
25 breq1 5150 . . . . . . 7 (𝑥 = 𝑔 → (𝑥 finSupp 𝑊𝑔 finSupp 𝑊))
2625elrab 3682 . . . . . 6 (𝑔 ∈ {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊} ↔ (𝑔 ∈ (𝐷m 𝐶) ∧ 𝑔 finSupp 𝑊))
2726simprbi 495 . . . . 5 (𝑔 ∈ {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊} → 𝑔 finSupp 𝑊)
2827, 13eleq2s 2849 . . . 4 (𝑔𝑇𝑔 finSupp 𝑊)
2928adantl 480 . . 3 ((𝜑𝑔𝑇) → 𝑔 finSupp 𝑊)
304, 1jca 510 . . . . . 6 (𝜑 → (𝐺:𝐵1-1-onto𝐷𝑍𝐵))
313eqcomi 2739 . . . . . 6 (𝐺𝑍) = 𝑊
3230, 31jctir 519 . . . . 5 (𝜑 → ((𝐺:𝐵1-1-onto𝐷𝑍𝐵) ∧ (𝐺𝑍) = 𝑊))
3332adantr 479 . . . 4 ((𝜑𝑔𝑇) → ((𝐺:𝐵1-1-onto𝐷𝑍𝐵) ∧ (𝐺𝑍) = 𝑊))
34 f1ocnvfv 7278 . . . . 5 ((𝐺:𝐵1-1-onto𝐷𝑍𝐵) → ((𝐺𝑍) = 𝑊 → (𝐺𝑊) = 𝑍))
3534imp 405 . . . 4 (((𝐺:𝐵1-1-onto𝐷𝑍𝐵) ∧ (𝐺𝑍) = 𝑊) → (𝐺𝑊) = 𝑍)
3633, 35syl 17 . . 3 ((𝜑𝑔𝑇) → (𝐺𝑊) = 𝑍)
372, 9, 15, 19, 20, 22, 24, 29, 36fsuppcor 9401 . 2 ((𝜑𝑔𝑇) → (𝐺𝑔) finSupp 𝑍)
38 mapfien.f . . . 4 (𝜑𝐹:𝐶1-1-onto𝐴)
39 f1ocnv 6844 . . . 4 (𝐹:𝐶1-1-onto𝐴𝐹:𝐴1-1-onto𝐶)
40 f1of1 6831 . . . 4 (𝐹:𝐴1-1-onto𝐶𝐹:𝐴1-1𝐶)
4138, 39, 403syl 18 . . 3 (𝜑𝐹:𝐴1-1𝐶)
4241adantr 479 . 2 ((𝜑𝑔𝑇) → 𝐹:𝐴1-1𝐶)
43 mapfien.b . . . . 5 (𝜑𝐵𝑉)
446, 43jca 510 . . . 4 (𝜑 → (𝐺:𝐵𝐷𝐵𝑉))
45 fex 7229 . . . 4 ((𝐺:𝐵𝐷𝐵𝑉) → 𝐺 ∈ V)
46 cnvexg 7917 . . . 4 (𝐺 ∈ V → 𝐺 ∈ V)
4744, 45, 463syl 18 . . 3 (𝜑𝐺 ∈ V)
48 coexg 7922 . . 3 ((𝐺 ∈ V ∧ 𝑔𝑇) → (𝐺𝑔) ∈ V)
4947, 48sylan 578 . 2 ((𝜑𝑔𝑇) → (𝐺𝑔) ∈ V)
5037, 42, 2, 49fsuppco 9399 1 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  {crab 3430  Vcvv 3472   class class class wbr 5147  ccnv 5674  ccom 5679  wf 6538  1-1wf1 6539  1-1-ontowf1o 6541  cfv 6542  (class class class)co 7411  m cmap 8822   finSupp cfsupp 9363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-1o 8468  df-map 8824  df-en 8942  df-fin 8945  df-fsupp 9364
This theorem is referenced by:  mapfienlem3  9404
  Copyright terms: Public domain W3C validator