MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdiv Structured version   Visualization version   GIF version

Theorem mdiv 11514
Description: A division law. (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
ldiv.a (𝜑𝐴 ∈ ℂ)
ldiv.b (𝜑𝐵 ∈ ℂ)
ldiv.c (𝜑𝐶 ∈ ℂ)
mdiv.an0 (𝜑𝐴 ≠ 0)
mdiv.bn0 (𝜑𝐵 ≠ 0)
Assertion
Ref Expression
mdiv (𝜑 → (𝐴 = (𝐶 / 𝐵) ↔ 𝐵 = (𝐶 / 𝐴)))

Proof of Theorem mdiv
StepHypRef Expression
1 ldiv.a . . 3 (𝜑𝐴 ∈ ℂ)
2 ldiv.b . . 3 (𝜑𝐵 ∈ ℂ)
3 ldiv.c . . 3 (𝜑𝐶 ∈ ℂ)
4 mdiv.bn0 . . 3 (𝜑𝐵 ≠ 0)
51, 2, 3, 4ldiv 11512 . 2 (𝜑 → ((𝐴 · 𝐵) = 𝐶𝐴 = (𝐶 / 𝐵)))
6 mdiv.an0 . . 3 (𝜑𝐴 ≠ 0)
71, 2, 3, 6rdiv 11513 . 2 (𝜑 → ((𝐴 · 𝐵) = 𝐶𝐵 = (𝐶 / 𝐴)))
85, 7bitr3d 284 1 (𝜑 → (𝐴 = (𝐶 / 𝐵) ↔ 𝐵 = (𝐶 / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  wne 2951  (class class class)co 7150  cc 10573  0cc0 10575   · cmul 10580   / cdiv 11335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-po 5443  df-so 5444  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator