| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ldiv | Structured version Visualization version GIF version | ||
| Description: Left-division. (Contributed by BJ, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| ldiv.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| ldiv.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| ldiv.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| ldiv.bn0 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| Ref | Expression |
|---|---|
| ldiv | ⊢ (𝜑 → ((𝐴 · 𝐵) = 𝐶 ↔ 𝐴 = (𝐶 / 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7362 | . . 3 ⊢ ((𝐴 · 𝐵) = 𝐶 → ((𝐴 · 𝐵) / 𝐵) = (𝐶 / 𝐵)) | |
| 2 | ldiv.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | ldiv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | ldiv.bn0 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 5 | 2, 3, 4 | divcan4d 11914 | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐵) = 𝐴) |
| 6 | 5 | eqeq1d 2735 | . . 3 ⊢ (𝜑 → (((𝐴 · 𝐵) / 𝐵) = (𝐶 / 𝐵) ↔ 𝐴 = (𝐶 / 𝐵))) |
| 7 | 1, 6 | imbitrid 244 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) = 𝐶 → 𝐴 = (𝐶 / 𝐵))) |
| 8 | oveq1 7362 | . . 3 ⊢ (𝐴 = (𝐶 / 𝐵) → (𝐴 · 𝐵) = ((𝐶 / 𝐵) · 𝐵)) | |
| 9 | ldiv.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 10 | 9, 3, 4 | divcan1d 11909 | . . . 4 ⊢ (𝜑 → ((𝐶 / 𝐵) · 𝐵) = 𝐶) |
| 11 | 10 | eqeq2d 2744 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝐵) = ((𝐶 / 𝐵) · 𝐵) ↔ (𝐴 · 𝐵) = 𝐶)) |
| 12 | 8, 11 | imbitrid 244 | . 2 ⊢ (𝜑 → (𝐴 = (𝐶 / 𝐵) → (𝐴 · 𝐵) = 𝐶)) |
| 13 | 7, 12 | impbid 212 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) = 𝐶 ↔ 𝐴 = (𝐶 / 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 (class class class)co 7355 ℂcc 11015 0cc0 11017 · cmul 11022 / cdiv 11785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 |
| This theorem is referenced by: rdiv 11967 mdiv 11968 dvdszzq 16639 constrrtll 33816 aks4d1p1p7 42240 aks4d1p1p5 42241 cxp112d 42511 |
| Copyright terms: Public domain | W3C validator |