Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ragflat2 | Structured version Visualization version GIF version |
Description: Deduce equality from two right angles. Theorem 8.6 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.) |
Ref | Expression |
---|---|
israg.p | ⊢ 𝑃 = (Base‘𝐺) |
israg.d | ⊢ − = (dist‘𝐺) |
israg.i | ⊢ 𝐼 = (Itv‘𝐺) |
israg.l | ⊢ 𝐿 = (LineG‘𝐺) |
israg.s | ⊢ 𝑆 = (pInvG‘𝐺) |
israg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
israg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
israg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
israg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ragflat2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
ragflat2.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
ragflat2.2 | ⊢ (𝜑 → 〈“𝐷𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
ragflat2.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) |
Ref | Expression |
---|---|
ragflat2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | israg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | israg.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
3 | israg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | israg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | israg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | ragflat2.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
7 | israg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
8 | eqid 2737 | . . . 4 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
9 | israg.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
10 | israg.s | . . . . 5 ⊢ 𝑆 = (pInvG‘𝐺) | |
11 | israg.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | eqid 2737 | . . . . 5 ⊢ (𝑆‘𝐵) = (𝑆‘𝐵) | |
13 | 1, 9, 3, 2, 10, 4, 11, 12, 7 | mircl 27158 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝐵)‘𝐶) ∈ 𝑃) |
14 | ragflat2.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) | |
15 | ragflat2.1 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | |
16 | 1, 9, 3, 2, 10, 4, 5, 11, 7 | israg 27194 | . . . . 5 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶)))) |
17 | 15, 16 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶))) |
18 | ragflat2.2 | . . . . 5 ⊢ (𝜑 → 〈“𝐷𝐵𝐶”〉 ∈ (∟G‘𝐺)) | |
19 | 1, 9, 3, 2, 10, 4, 6, 11, 7 | israg 27194 | . . . . 5 ⊢ (𝜑 → (〈“𝐷𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐷 − 𝐶) = (𝐷 − ((𝑆‘𝐵)‘𝐶)))) |
20 | 18, 19 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐷 − 𝐶) = (𝐷 − ((𝑆‘𝐵)‘𝐶))) |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 13, 5, 9, 14, 17, 20 | tgidinside 27068 | . . 3 ⊢ (𝜑 → 𝐶 = ((𝑆‘𝐵)‘𝐶)) |
22 | 21 | eqcomd 2743 | . 2 ⊢ (𝜑 → ((𝑆‘𝐵)‘𝐶) = 𝐶) |
23 | 1, 9, 3, 2, 10, 4, 11, 12, 7 | mirinv 27163 | . 2 ⊢ (𝜑 → (((𝑆‘𝐵)‘𝐶) = 𝐶 ↔ 𝐵 = 𝐶)) |
24 | 22, 23 | mpbid 231 | 1 ⊢ (𝜑 → 𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6466 (class class class)co 7317 〈“cs3 14634 Basecbs 16989 distcds 17048 TarskiGcstrkg 26924 Itvcitv 26930 LineGclng 26931 cgrGccgrg 27007 pInvGcmir 27149 ∟Gcrag 27190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-oadd 8350 df-er 8548 df-map 8667 df-pm 8668 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-dju 9737 df-card 9775 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-3 12117 df-n0 12314 df-xnn0 12386 df-z 12400 df-uz 12663 df-fz 13320 df-fzo 13463 df-hash 14125 df-word 14297 df-concat 14353 df-s1 14380 df-s2 14640 df-s3 14641 df-trkgc 26945 df-trkgb 26946 df-trkgcb 26947 df-trkg 26950 df-cgrg 27008 df-mir 27150 df-rag 27191 |
This theorem is referenced by: ragflat 27201 opphllem5 27248 opphllem6 27249 |
Copyright terms: Public domain | W3C validator |