MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragcom Structured version   Visualization version   GIF version

Theorem ragcom 26487
Description: Commutative rule for right angles. Theorem 8.2 of [Schwabhauser] p. 57. (Contributed by Thierry Arnoux, 25-Aug-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
ragcom.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
Assertion
Ref Expression
ragcom (𝜑 → ⟨“𝐶𝐵𝐴”⟩ ∈ (∟G‘𝐺))

Proof of Theorem ragcom
StepHypRef Expression
1 israg.p . . . 4 𝑃 = (Base‘𝐺)
2 israg.d . . . 4 = (dist‘𝐺)
3 israg.i . . . 4 𝐼 = (Itv‘𝐺)
4 israg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
5 israg.a . . . 4 (𝜑𝐴𝑃)
6 israg.c . . . 4 (𝜑𝐶𝑃)
7 israg.l . . . . 5 𝐿 = (LineG‘𝐺)
8 israg.s . . . . 5 𝑆 = (pInvG‘𝐺)
9 israg.b . . . . 5 (𝜑𝐵𝑃)
10 eqid 2824 . . . . 5 (𝑆𝐵) = (𝑆𝐵)
111, 2, 3, 7, 8, 4, 9, 10, 6mircl 26450 . . . 4 (𝜑 → ((𝑆𝐵)‘𝐶) ∈ 𝑃)
12 ragcom.1 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
131, 2, 3, 7, 8, 4, 5, 9, 6israg 26486 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))
1412, 13mpbid 234 . . . 4 (𝜑 → (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)))
151, 2, 3, 4, 5, 6, 5, 11, 14tgcgrcomlr 26269 . . 3 (𝜑 → (𝐶 𝐴) = (((𝑆𝐵)‘𝐶) 𝐴))
161, 2, 3, 7, 8, 4, 9, 10, 11, 5miriso 26459 . . 3 (𝜑 → (((𝑆𝐵)‘((𝑆𝐵)‘𝐶)) ((𝑆𝐵)‘𝐴)) = (((𝑆𝐵)‘𝐶) 𝐴))
171, 2, 3, 7, 8, 4, 9, 10, 6mirmir 26451 . . . 4 (𝜑 → ((𝑆𝐵)‘((𝑆𝐵)‘𝐶)) = 𝐶)
1817oveq1d 7174 . . 3 (𝜑 → (((𝑆𝐵)‘((𝑆𝐵)‘𝐶)) ((𝑆𝐵)‘𝐴)) = (𝐶 ((𝑆𝐵)‘𝐴)))
1915, 16, 183eqtr2d 2865 . 2 (𝜑 → (𝐶 𝐴) = (𝐶 ((𝑆𝐵)‘𝐴)))
201, 2, 3, 7, 8, 4, 6, 9, 5israg 26486 . 2 (𝜑 → (⟨“𝐶𝐵𝐴”⟩ ∈ (∟G‘𝐺) ↔ (𝐶 𝐴) = (𝐶 ((𝑆𝐵)‘𝐴))))
2119, 20mpbird 259 1 (𝜑 → ⟨“𝐶𝐵𝐴”⟩ ∈ (∟G‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  cfv 6358  (class class class)co 7159  ⟨“cs3 14207  Basecbs 16486  distcds 16577  TarskiGcstrkg 26219  Itvcitv 26225  LineGclng 26226  pInvGcmir 26441  ∟Gcrag 26482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13926  df-s1 13953  df-s2 14213  df-s3 14214  df-trkgc 26237  df-trkgb 26238  df-trkgcb 26239  df-trkg 26242  df-mir 26442  df-rag 26483
This theorem is referenced by:  ragflat  26493  ragtriva  26494  perpcom  26502  ragperp  26506  footexALT  26507  footexlem1  26508  footexlem2  26509  perpdragALT  26516  colperpexlem3  26521  mideulem2  26523  hypcgrlem1  26588  trgcopy  26593
  Copyright terms: Public domain W3C validator