![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ragcom | Structured version Visualization version GIF version |
Description: Commutative rule for right angles. Theorem 8.2 of [Schwabhauser] p. 57. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
Ref | Expression |
---|---|
israg.p | β’ π = (BaseβπΊ) |
israg.d | β’ β = (distβπΊ) |
israg.i | β’ πΌ = (ItvβπΊ) |
israg.l | β’ πΏ = (LineGβπΊ) |
israg.s | β’ π = (pInvGβπΊ) |
israg.g | β’ (π β πΊ β TarskiG) |
israg.a | β’ (π β π΄ β π) |
israg.b | β’ (π β π΅ β π) |
israg.c | β’ (π β πΆ β π) |
ragcom.1 | β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) |
Ref | Expression |
---|---|
ragcom | β’ (π β β¨βπΆπ΅π΄ββ© β (βGβπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | israg.p | . . . 4 β’ π = (BaseβπΊ) | |
2 | israg.d | . . . 4 β’ β = (distβπΊ) | |
3 | israg.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
4 | israg.g | . . . 4 β’ (π β πΊ β TarskiG) | |
5 | israg.a | . . . 4 β’ (π β π΄ β π) | |
6 | israg.c | . . . 4 β’ (π β πΆ β π) | |
7 | israg.l | . . . . 5 β’ πΏ = (LineGβπΊ) | |
8 | israg.s | . . . . 5 β’ π = (pInvGβπΊ) | |
9 | israg.b | . . . . 5 β’ (π β π΅ β π) | |
10 | eqid 2732 | . . . . 5 β’ (πβπ΅) = (πβπ΅) | |
11 | 1, 2, 3, 7, 8, 4, 9, 10, 6 | mircl 28167 | . . . 4 β’ (π β ((πβπ΅)βπΆ) β π) |
12 | ragcom.1 | . . . . 5 β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) | |
13 | 1, 2, 3, 7, 8, 4, 5, 9, 6 | israg 28203 | . . . . 5 β’ (π β (β¨βπ΄π΅πΆββ© β (βGβπΊ) β (π΄ β πΆ) = (π΄ β ((πβπ΅)βπΆ)))) |
14 | 12, 13 | mpbid 231 | . . . 4 β’ (π β (π΄ β πΆ) = (π΄ β ((πβπ΅)βπΆ))) |
15 | 1, 2, 3, 4, 5, 6, 5, 11, 14 | tgcgrcomlr 27986 | . . 3 β’ (π β (πΆ β π΄) = (((πβπ΅)βπΆ) β π΄)) |
16 | 1, 2, 3, 7, 8, 4, 9, 10, 11, 5 | miriso 28176 | . . 3 β’ (π β (((πβπ΅)β((πβπ΅)βπΆ)) β ((πβπ΅)βπ΄)) = (((πβπ΅)βπΆ) β π΄)) |
17 | 1, 2, 3, 7, 8, 4, 9, 10, 6 | mirmir 28168 | . . . 4 β’ (π β ((πβπ΅)β((πβπ΅)βπΆ)) = πΆ) |
18 | 17 | oveq1d 7426 | . . 3 β’ (π β (((πβπ΅)β((πβπ΅)βπΆ)) β ((πβπ΅)βπ΄)) = (πΆ β ((πβπ΅)βπ΄))) |
19 | 15, 16, 18 | 3eqtr2d 2778 | . 2 β’ (π β (πΆ β π΄) = (πΆ β ((πβπ΅)βπ΄))) |
20 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | israg 28203 | . 2 β’ (π β (β¨βπΆπ΅π΄ββ© β (βGβπΊ) β (πΆ β π΄) = (πΆ β ((πβπ΅)βπ΄)))) |
21 | 19, 20 | mpbird 256 | 1 β’ (π β β¨βπΆπ΅π΄ββ© β (βGβπΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7411 β¨βcs3 14797 Basecbs 17148 distcds 17210 TarskiGcstrkg 27933 Itvcitv 27939 LineGclng 27940 pInvGcmir 28158 βGcrag 28199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-oadd 8472 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-hash 14295 df-word 14469 df-concat 14525 df-s1 14550 df-s2 14803 df-s3 14804 df-trkgc 27954 df-trkgb 27955 df-trkgcb 27956 df-trkg 27959 df-mir 28159 df-rag 28200 |
This theorem is referenced by: ragflat 28210 ragtriva 28211 perpcom 28219 ragperp 28223 footexALT 28224 footexlem1 28225 footexlem2 28226 perpdragALT 28233 colperpexlem3 28238 mideulem2 28240 hypcgrlem1 28305 trgcopy 28310 |
Copyright terms: Public domain | W3C validator |