![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ragcom | Structured version Visualization version GIF version |
Description: Commutative rule for right angles. Theorem 8.2 of [Schwabhauser] p. 57. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
Ref | Expression |
---|---|
israg.p | ⊢ 𝑃 = (Base‘𝐺) |
israg.d | ⊢ − = (dist‘𝐺) |
israg.i | ⊢ 𝐼 = (Itv‘𝐺) |
israg.l | ⊢ 𝐿 = (LineG‘𝐺) |
israg.s | ⊢ 𝑆 = (pInvG‘𝐺) |
israg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
israg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
israg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
israg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ragcom.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
Ref | Expression |
---|---|
ragcom | ⊢ (𝜑 → 〈“𝐶𝐵𝐴”〉 ∈ (∟G‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | israg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | israg.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | israg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | israg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | israg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | israg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | israg.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
8 | israg.s | . . . . 5 ⊢ 𝑆 = (pInvG‘𝐺) | |
9 | israg.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
10 | eqid 2825 | . . . . 5 ⊢ (𝑆‘𝐵) = (𝑆‘𝐵) | |
11 | 1, 2, 3, 7, 8, 4, 9, 10, 6 | mircl 25973 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝐵)‘𝐶) ∈ 𝑃) |
12 | ragcom.1 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | |
13 | 1, 2, 3, 7, 8, 4, 5, 9, 6 | israg 26009 | . . . . 5 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶)))) |
14 | 12, 13 | mpbid 224 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶))) |
15 | 1, 2, 3, 4, 5, 6, 5, 11, 14 | tgcgrcomlr 25792 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐴) = (((𝑆‘𝐵)‘𝐶) − 𝐴)) |
16 | 1, 2, 3, 7, 8, 4, 9, 10, 11, 5 | miriso 25982 | . . 3 ⊢ (𝜑 → (((𝑆‘𝐵)‘((𝑆‘𝐵)‘𝐶)) − ((𝑆‘𝐵)‘𝐴)) = (((𝑆‘𝐵)‘𝐶) − 𝐴)) |
17 | 1, 2, 3, 7, 8, 4, 9, 10, 6 | mirmir 25974 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝐵)‘((𝑆‘𝐵)‘𝐶)) = 𝐶) |
18 | 17 | oveq1d 6920 | . . 3 ⊢ (𝜑 → (((𝑆‘𝐵)‘((𝑆‘𝐵)‘𝐶)) − ((𝑆‘𝐵)‘𝐴)) = (𝐶 − ((𝑆‘𝐵)‘𝐴))) |
19 | 15, 16, 18 | 3eqtr2d 2867 | . 2 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐶 − ((𝑆‘𝐵)‘𝐴))) |
20 | 1, 2, 3, 7, 8, 4, 6, 9, 5 | israg 26009 | . 2 ⊢ (𝜑 → (〈“𝐶𝐵𝐴”〉 ∈ (∟G‘𝐺) ↔ (𝐶 − 𝐴) = (𝐶 − ((𝑆‘𝐵)‘𝐴)))) |
21 | 19, 20 | mpbird 249 | 1 ⊢ (𝜑 → 〈“𝐶𝐵𝐴”〉 ∈ (∟G‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 ‘cfv 6123 (class class class)co 6905 〈“cs3 13963 Basecbs 16222 distcds 16314 TarskiGcstrkg 25742 Itvcitv 25748 LineGclng 25749 pInvGcmir 25964 ∟Gcrag 26005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-map 8124 df-pm 8125 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-card 9078 df-cda 9305 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-3 11415 df-n0 11619 df-xnn0 11691 df-z 11705 df-uz 11969 df-fz 12620 df-fzo 12761 df-hash 13411 df-word 13575 df-concat 13631 df-s1 13656 df-s2 13969 df-s3 13970 df-trkgc 25760 df-trkgb 25761 df-trkgcb 25762 df-trkg 25765 df-mir 25965 df-rag 26006 |
This theorem is referenced by: ragflat 26016 ragtriva 26017 perpcom 26025 ragperp 26029 footex 26030 perpdragALT 26036 colperpexlem3 26041 mideulem2 26043 hypcgrlem1 26108 trgcopy 26113 |
Copyright terms: Public domain | W3C validator |