MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  msq11 Structured version   Visualization version   GIF version

Theorem msq11 12115
Description: The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
msq11 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ด ยท ๐ด) = (๐ต ยท ๐ต) โ†” ๐ด = ๐ต))

Proof of Theorem msq11
StepHypRef Expression
1 le2msq 12114 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (๐ด โ‰ค ๐ต โ†” (๐ด ยท ๐ด) โ‰ค (๐ต ยท ๐ต)))
2 le2msq 12114 . . . 4 (((๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต) โˆง (๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด)) โ†’ (๐ต โ‰ค ๐ด โ†” (๐ต ยท ๐ต) โ‰ค (๐ด ยท ๐ด)))
32ancoms 460 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (๐ต โ‰ค ๐ด โ†” (๐ต ยท ๐ต) โ‰ค (๐ด ยท ๐ด)))
41, 3anbi12d 632 . 2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ด โ‰ค ๐ต โˆง ๐ต โ‰ค ๐ด) โ†” ((๐ด ยท ๐ด) โ‰ค (๐ต ยท ๐ต) โˆง (๐ต ยท ๐ต) โ‰ค (๐ด ยท ๐ด))))
5 simpll 766 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ๐ด โˆˆ โ„)
6 simprl 770 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ๐ต โˆˆ โ„)
75, 6letri3d 11356 . 2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (๐ด = ๐ต โ†” (๐ด โ‰ค ๐ต โˆง ๐ต โ‰ค ๐ด)))
85, 5remulcld 11244 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (๐ด ยท ๐ด) โˆˆ โ„)
96, 6remulcld 11244 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (๐ต ยท ๐ต) โˆˆ โ„)
108, 9letri3d 11356 . 2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ด ยท ๐ด) = (๐ต ยท ๐ต) โ†” ((๐ด ยท ๐ด) โ‰ค (๐ต ยท ๐ต) โˆง (๐ต ยท ๐ต) โ‰ค (๐ด ยท ๐ด))))
114, 7, 103bitr4rd 312 1 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ด ยท ๐ด) = (๐ต ยท ๐ต) โ†” ๐ด = ๐ต))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107   class class class wbr 5149  (class class class)co 7409  โ„cr 11109  0cc0 11110   ยท cmul 11115   โ‰ค cle 11249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447
This theorem is referenced by:  msq11i  12128  sq11  14096
  Copyright terms: Public domain W3C validator