![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > muladdd | Structured version Visualization version GIF version |
Description: Product of two sums. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulm1d.1 | โข (๐ โ ๐ด โ โ) |
mulnegd.2 | โข (๐ โ ๐ต โ โ) |
subdid.3 | โข (๐ โ ๐ถ โ โ) |
muladdd.4 | โข (๐ โ ๐ท โ โ) |
Ref | Expression |
---|---|
muladdd | โข (๐ โ ((๐ด + ๐ต) ยท (๐ถ + ๐ท)) = (((๐ด ยท ๐ถ) + (๐ท ยท ๐ต)) + ((๐ด ยท ๐ท) + (๐ถ ยท ๐ต)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1d.1 | . 2 โข (๐ โ ๐ด โ โ) | |
2 | mulnegd.2 | . 2 โข (๐ โ ๐ต โ โ) | |
3 | subdid.3 | . 2 โข (๐ โ ๐ถ โ โ) | |
4 | muladdd.4 | . 2 โข (๐ โ ๐ท โ โ) | |
5 | muladd 11653 | . 2 โข (((๐ด โ โ โง ๐ต โ โ) โง (๐ถ โ โ โง ๐ท โ โ)) โ ((๐ด + ๐ต) ยท (๐ถ + ๐ท)) = (((๐ด ยท ๐ถ) + (๐ท ยท ๐ต)) + ((๐ด ยท ๐ท) + (๐ถ ยท ๐ต)))) | |
6 | 1, 2, 3, 4, 5 | syl22anc 836 | 1 โข (๐ โ ((๐ด + ๐ต) ยท (๐ถ + ๐ท)) = (((๐ด ยท ๐ถ) + (๐ท ยท ๐ต)) + ((๐ด ยท ๐ท) + (๐ถ ยท ๐ต)))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1540 โ wcel 2105 (class class class)co 7412 โcc 11114 + caddc 11119 ยท cmul 11121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-ltxr 11260 |
This theorem is referenced by: sqreulem 15313 bhmafibid1cn 15417 bhmafibid2cn 15418 sinadd 16114 cosadd 16115 lgsquad2lem1 27232 pell1234qrmulcl 42059 rmxyadd 42126 dirkertrigeqlem3 45278 |
Copyright terms: Public domain | W3C validator |