MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bhmafibid2cn Structured version   Visualization version   GIF version

Theorem bhmafibid2cn 15439
Description: The Brahmagupta-Fibonacci identity for complex numbers. Express the product of two sums of two squares as a sum of two squares. Second result. (Contributed by Thierry Arnoux, 1-Feb-2020.) Generalization for complex numbers proposed by GL. (Revised by AV, 8-Jun-2023.)
Assertion
Ref Expression
bhmafibid2cn (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) + (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) − (𝐵 · 𝐶))↑2)))

Proof of Theorem bhmafibid2cn
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐴 ∈ ℂ)
21sqcld 14115 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴↑2) ∈ ℂ)
3 simprl 770 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐶 ∈ ℂ)
43sqcld 14115 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶↑2) ∈ ℂ)
52, 4mulcld 11200 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴↑2) · (𝐶↑2)) ∈ ℂ)
6 simprr 772 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐷 ∈ ℂ)
76sqcld 14115 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐷↑2) ∈ ℂ)
8 simplr 768 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐵 ∈ ℂ)
98sqcld 14115 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵↑2) ∈ ℂ)
107, 9mulcld 11200 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐷↑2) · (𝐵↑2)) ∈ ℂ)
112, 7mulcld 11200 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴↑2) · (𝐷↑2)) ∈ ℂ)
124, 9mulcld 11200 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶↑2) · (𝐵↑2)) ∈ ℂ)
135, 10, 11, 12add4d 11409 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐷↑2) · (𝐵↑2))) + (((𝐴↑2) · (𝐷↑2)) + ((𝐶↑2) · (𝐵↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐷↑2) · (𝐵↑2)) + ((𝐶↑2) · (𝐵↑2)))))
147, 9mulcomd 11201 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐷↑2) · (𝐵↑2)) = ((𝐵↑2) · (𝐷↑2)))
154, 9mulcomd 11201 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶↑2) · (𝐵↑2)) = ((𝐵↑2) · (𝐶↑2)))
1614, 15oveq12d 7407 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐷↑2) · (𝐵↑2)) + ((𝐶↑2) · (𝐵↑2))) = (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2))))
1716oveq2d 7405 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐷↑2) · (𝐵↑2)) + ((𝐶↑2) · (𝐵↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
1813, 17eqtrd 2765 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐷↑2) · (𝐵↑2))) + (((𝐴↑2) · (𝐷↑2)) + ((𝐶↑2) · (𝐵↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
192, 9, 4, 7muladdd 11642 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐷↑2) · (𝐵↑2))) + (((𝐴↑2) · (𝐷↑2)) + ((𝐶↑2) · (𝐵↑2)))))
201, 3mulcld 11200 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 · 𝐶) ∈ ℂ)
218, 6mulcld 11200 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐷) ∈ ℂ)
22 binom2 14188 . . . . 5 (((𝐴 · 𝐶) ∈ ℂ ∧ (𝐵 · 𝐷) ∈ ℂ) → (((𝐴 · 𝐶) + (𝐵 · 𝐷))↑2) = ((((𝐴 · 𝐶)↑2) + (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)))
2320, 21, 22syl2anc 584 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐵 · 𝐷))↑2) = ((((𝐴 · 𝐶)↑2) + (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)))
241, 6mulcld 11200 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 · 𝐷) ∈ ℂ)
258, 3mulcld 11200 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐶) ∈ ℂ)
26 binom2sub 14191 . . . . 5 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ) → (((𝐴 · 𝐷) − (𝐵 · 𝐶))↑2) = ((((𝐴 · 𝐷)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2)))
2724, 25, 26syl2anc 584 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐷) − (𝐵 · 𝐶))↑2) = ((((𝐴 · 𝐷)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2)))
2823, 27oveq12d 7407 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶) + (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) − (𝐵 · 𝐶))↑2)) = (((((𝐴 · 𝐶)↑2) + (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)) + ((((𝐴 · 𝐷)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2))))
2920sqcld 14115 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶)↑2) ∈ ℂ)
30 2cnd 12265 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 2 ∈ ℂ)
3120, 21mulcld 11200 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) · (𝐵 · 𝐷)) ∈ ℂ)
3230, 31mulcld 11200 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷))) ∈ ℂ)
3329, 32addcld 11199 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶)↑2) + (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) ∈ ℂ)
3421sqcld 14115 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐷)↑2) ∈ ℂ)
3524sqcld 14115 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷)↑2) ∈ ℂ)
3624, 25mulcld 11200 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷) · (𝐵 · 𝐶)) ∈ ℂ)
3730, 36mulcld 11200 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))) ∈ ℂ)
3835, 37subcld 11539 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐷)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) ∈ ℂ)
3925sqcld 14115 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐶)↑2) ∈ ℂ)
4033, 34, 38, 39add4d 11409 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((((𝐴 · 𝐶)↑2) + (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)) + ((((𝐴 · 𝐷)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2))) = (((((𝐴 · 𝐶)↑2) + (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) + (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2))))
41 mul4r 11349 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) · (𝐵 · 𝐷)) = ((𝐴 · 𝐷) · (𝐵 · 𝐶)))
4241an4s 660 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) · (𝐵 · 𝐷)) = ((𝐴 · 𝐷) · (𝐵 · 𝐶)))
4342oveq2d 7405 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷))) = (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))
4443oveq2d 7405 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶)↑2) + (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) = (((𝐴 · 𝐶)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))))
4544oveq1d 7404 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) + (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) = ((((𝐴 · 𝐶)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + (((𝐴 · 𝐷)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))))
4629, 37, 35ppncand 11579 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + (((𝐴 · 𝐷)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) = (((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)))
4745, 46eqtrd 2765 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) + (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) = (((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)))
488, 6sqmuld 14129 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐷)↑2) = ((𝐵↑2) · (𝐷↑2)))
498, 3sqmuld 14129 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐶)↑2) = ((𝐵↑2) · (𝐶↑2)))
5048, 49oveq12d 7407 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2)) = (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2))))
5147, 50oveq12d 7407 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((((𝐴 · 𝐶)↑2) + (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) + (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2))) = ((((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
521, 3sqmuld 14129 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶)↑2) = ((𝐴↑2) · (𝐶↑2)))
531, 6sqmuld 14129 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷)↑2) = ((𝐴↑2) · (𝐷↑2)))
5452, 53oveq12d 7407 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)) = (((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))))
5554oveq1d 7404 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
5651, 55eqtrd 2765 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((((𝐴 · 𝐶)↑2) + (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) + (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
5728, 40, 563eqtrd 2769 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶) + (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) − (𝐵 · 𝐶))↑2)) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
5818, 19, 573eqtr4d 2775 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) + (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) − (𝐵 · 𝐶))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7389  cc 11072   + caddc 11077   · cmul 11079  cmin 11411  2c2 12242  cexp 14032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-n0 12449  df-z 12536  df-uz 12800  df-seq 13973  df-exp 14033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator