MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bhmafibid1cn Structured version   Visualization version   GIF version

Theorem bhmafibid1cn 15439
Description: The Brahmagupta-Fibonacci identity for complex numbers. Express the product of two sums of two squares as a sum of two squares. First result. (Contributed by Thierry Arnoux, 1-Feb-2020.) Generalization for complex numbers proposed by GL. (Revised by AV, 8-Jun-2023.)
Assertion
Ref Expression
bhmafibid1cn (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))

Proof of Theorem bhmafibid1cn
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐴 ∈ ℂ)
21sqcld 14116 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴↑2) ∈ ℂ)
3 simprl 770 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐶 ∈ ℂ)
43sqcld 14116 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶↑2) ∈ ℂ)
52, 4mulcld 11201 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴↑2) · (𝐶↑2)) ∈ ℂ)
6 simprr 772 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐷 ∈ ℂ)
76sqcld 14116 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐷↑2) ∈ ℂ)
8 simplr 768 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐵 ∈ ℂ)
98sqcld 14116 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵↑2) ∈ ℂ)
107, 9mulcld 11201 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐷↑2) · (𝐵↑2)) ∈ ℂ)
112, 7mulcld 11201 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴↑2) · (𝐷↑2)) ∈ ℂ)
124, 9mulcld 11201 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶↑2) · (𝐵↑2)) ∈ ℂ)
135, 10, 11, 12add4d 11410 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐷↑2) · (𝐵↑2))) + (((𝐴↑2) · (𝐷↑2)) + ((𝐶↑2) · (𝐵↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐷↑2) · (𝐵↑2)) + ((𝐶↑2) · (𝐵↑2)))))
147, 9mulcomd 11202 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐷↑2) · (𝐵↑2)) = ((𝐵↑2) · (𝐷↑2)))
154, 9mulcomd 11202 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶↑2) · (𝐵↑2)) = ((𝐵↑2) · (𝐶↑2)))
1614, 15oveq12d 7408 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐷↑2) · (𝐵↑2)) + ((𝐶↑2) · (𝐵↑2))) = (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2))))
1716oveq2d 7406 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐷↑2) · (𝐵↑2)) + ((𝐶↑2) · (𝐵↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
1813, 17eqtrd 2765 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐷↑2) · (𝐵↑2))) + (((𝐴↑2) · (𝐷↑2)) + ((𝐶↑2) · (𝐵↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
192, 9, 4, 7muladdd 11643 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐷↑2) · (𝐵↑2))) + (((𝐴↑2) · (𝐷↑2)) + ((𝐶↑2) · (𝐵↑2)))))
201, 3mulcld 11201 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 · 𝐶) ∈ ℂ)
218, 6mulcld 11201 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐷) ∈ ℂ)
22 binom2sub 14192 . . . . 5 (((𝐴 · 𝐶) ∈ ℂ ∧ (𝐵 · 𝐷) ∈ ℂ) → (((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) = ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)))
2320, 21, 22syl2anc 584 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) = ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)))
241, 6mulcld 11201 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 · 𝐷) ∈ ℂ)
258, 3mulcld 11201 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐶) ∈ ℂ)
26 binom2 14189 . . . . 5 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ) → (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2) = ((((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2)))
2724, 25, 26syl2anc 584 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2) = ((((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2)))
2823, 27oveq12d 7408 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)) = (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)) + ((((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2))))
2920sqcld 14116 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶)↑2) ∈ ℂ)
30 2cnd 12271 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 2 ∈ ℂ)
3120, 21mulcld 11201 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) · (𝐵 · 𝐷)) ∈ ℂ)
3230, 31mulcld 11201 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷))) ∈ ℂ)
3329, 32subcld 11540 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) ∈ ℂ)
3421sqcld 14116 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐷)↑2) ∈ ℂ)
3524sqcld 14116 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷)↑2) ∈ ℂ)
3624, 25mulcld 11201 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷) · (𝐵 · 𝐶)) ∈ ℂ)
3730, 36mulcld 11201 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))) ∈ ℂ)
3835, 37addcld 11200 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) ∈ ℂ)
3925sqcld 14116 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐶)↑2) ∈ ℂ)
4033, 34, 38, 39add4d 11410 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)) + ((((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2))) = (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) + (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2))))
41 mul4r 11350 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) · (𝐵 · 𝐷)) = ((𝐴 · 𝐷) · (𝐵 · 𝐶)))
4241an4s 660 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) · (𝐵 · 𝐷)) = ((𝐴 · 𝐷) · (𝐵 · 𝐶)))
4342oveq2d 7406 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷))) = (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))
4443oveq2d 7406 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) = (((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))))
4544oveq1d 7405 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) = ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))))
4629, 37, 35nppcan3d 11567 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) = (((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)))
4745, 46eqtrd 2765 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) = (((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)))
488, 6sqmuld 14130 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐷)↑2) = ((𝐵↑2) · (𝐷↑2)))
498, 3sqmuld 14130 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐶)↑2) = ((𝐵↑2) · (𝐶↑2)))
5048, 49oveq12d 7408 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2)) = (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2))))
5147, 50oveq12d 7408 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) + (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2))) = ((((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
521, 3sqmuld 14130 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶)↑2) = ((𝐴↑2) · (𝐶↑2)))
531, 6sqmuld 14130 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷)↑2) = ((𝐴↑2) · (𝐷↑2)))
5452, 53oveq12d 7408 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)) = (((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))))
5554oveq1d 7405 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
5651, 55eqtrd 2765 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) + (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
5728, 40, 563eqtrd 2769 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
5818, 19, 573eqtr4d 2775 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7390  cc 11073   + caddc 11078   · cmul 11080  cmin 11412  2c2 12248  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-exp 14034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator