Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bhmafibid1cn Structured version   Visualization version   GIF version

Theorem bhmafibid1cn 14818
 Description: The Brahmagupta-Fibonacci identity for complex numbers. Express the product of two sums of two squares as a sum of two squares. First result. (Contributed by Thierry Arnoux, 1-Feb-2020.) Generalization for complex numbers proposed by GL. (Revised by AV, 8-Jun-2023.)
Assertion
Ref Expression
bhmafibid1cn (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))

Proof of Theorem bhmafibid1cn
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐴 ∈ ℂ)
21sqcld 13508 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴↑2) ∈ ℂ)
3 simprl 770 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐶 ∈ ℂ)
43sqcld 13508 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶↑2) ∈ ℂ)
52, 4mulcld 10654 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴↑2) · (𝐶↑2)) ∈ ℂ)
6 simprr 772 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐷 ∈ ℂ)
76sqcld 13508 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐷↑2) ∈ ℂ)
8 simplr 768 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐵 ∈ ℂ)
98sqcld 13508 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵↑2) ∈ ℂ)
107, 9mulcld 10654 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐷↑2) · (𝐵↑2)) ∈ ℂ)
112, 7mulcld 10654 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴↑2) · (𝐷↑2)) ∈ ℂ)
124, 9mulcld 10654 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶↑2) · (𝐵↑2)) ∈ ℂ)
135, 10, 11, 12add4d 10861 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐷↑2) · (𝐵↑2))) + (((𝐴↑2) · (𝐷↑2)) + ((𝐶↑2) · (𝐵↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐷↑2) · (𝐵↑2)) + ((𝐶↑2) · (𝐵↑2)))))
147, 9mulcomd 10655 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐷↑2) · (𝐵↑2)) = ((𝐵↑2) · (𝐷↑2)))
154, 9mulcomd 10655 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶↑2) · (𝐵↑2)) = ((𝐵↑2) · (𝐶↑2)))
1614, 15oveq12d 7157 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐷↑2) · (𝐵↑2)) + ((𝐶↑2) · (𝐵↑2))) = (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2))))
1716oveq2d 7155 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐷↑2) · (𝐵↑2)) + ((𝐶↑2) · (𝐵↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
1813, 17eqtrd 2836 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐷↑2) · (𝐵↑2))) + (((𝐴↑2) · (𝐷↑2)) + ((𝐶↑2) · (𝐵↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
192, 9, 4, 7muladdd 11091 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐷↑2) · (𝐵↑2))) + (((𝐴↑2) · (𝐷↑2)) + ((𝐶↑2) · (𝐵↑2)))))
201, 3mulcld 10654 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 · 𝐶) ∈ ℂ)
218, 6mulcld 10654 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐷) ∈ ℂ)
22 binom2sub 13581 . . . . 5 (((𝐴 · 𝐶) ∈ ℂ ∧ (𝐵 · 𝐷) ∈ ℂ) → (((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) = ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)))
2320, 21, 22syl2anc 587 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) = ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)))
241, 6mulcld 10654 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 · 𝐷) ∈ ℂ)
258, 3mulcld 10654 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐶) ∈ ℂ)
26 binom2 13579 . . . . 5 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ) → (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2) = ((((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2)))
2724, 25, 26syl2anc 587 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2) = ((((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2)))
2823, 27oveq12d 7157 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)) = (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)) + ((((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2))))
2920sqcld 13508 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶)↑2) ∈ ℂ)
30 2cnd 11707 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 2 ∈ ℂ)
3120, 21mulcld 10654 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) · (𝐵 · 𝐷)) ∈ ℂ)
3230, 31mulcld 10654 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷))) ∈ ℂ)
3329, 32subcld 10990 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) ∈ ℂ)
3421sqcld 13508 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐷)↑2) ∈ ℂ)
3524sqcld 13508 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷)↑2) ∈ ℂ)
3624, 25mulcld 10654 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷) · (𝐵 · 𝐶)) ∈ ℂ)
3730, 36mulcld 10654 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))) ∈ ℂ)
3835, 37addcld 10653 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) ∈ ℂ)
3925sqcld 13508 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐶)↑2) ∈ ℂ)
4033, 34, 38, 39add4d 10861 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)) + ((((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2))) = (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) + (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2))))
41 mul4r 10802 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) · (𝐵 · 𝐷)) = ((𝐴 · 𝐷) · (𝐵 · 𝐶)))
4241an4s 659 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) · (𝐵 · 𝐷)) = ((𝐴 · 𝐷) · (𝐵 · 𝐶)))
4342oveq2d 7155 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷))) = (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))
4443oveq2d 7155 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) = (((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))))
4544oveq1d 7154 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) = ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))))
4629, 37, 35nppcan3d 11017 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) = (((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)))
4745, 46eqtrd 2836 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) = (((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)))
488, 6sqmuld 13522 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐷)↑2) = ((𝐵↑2) · (𝐷↑2)))
498, 3sqmuld 13522 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐶)↑2) = ((𝐵↑2) · (𝐶↑2)))
5048, 49oveq12d 7157 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2)) = (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2))))
5147, 50oveq12d 7157 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) + (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2))) = ((((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
521, 3sqmuld 13522 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶)↑2) = ((𝐴↑2) · (𝐶↑2)))
531, 6sqmuld 13522 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷)↑2) = ((𝐴↑2) · (𝐷↑2)))
5452, 53oveq12d 7157 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)) = (((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))))
5554oveq1d 7154 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
5651, 55eqtrd 2836 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) + (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
5728, 40, 563eqtrd 2840 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
5818, 19, 573eqtr4d 2846 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  (class class class)co 7139  ℂcc 10528   + caddc 10533   · cmul 10535   − cmin 10863  2c2 11684  ↑cexp 13429 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-seq 13369  df-exp 13430 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator