MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bhmafibid1cn Structured version   Visualization version   GIF version

Theorem bhmafibid1cn 15244
Description: The Brahmagupta-Fibonacci identity for complex numbers. Express the product of two sums of two squares as a sum of two squares. First result. (Contributed by Thierry Arnoux, 1-Feb-2020.) Generalization for complex numbers proposed by GL. (Revised by AV, 8-Jun-2023.)
Assertion
Ref Expression
bhmafibid1cn (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))

Proof of Theorem bhmafibid1cn
StepHypRef Expression
1 simpll 764 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐴 ∈ ℂ)
21sqcld 13932 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴↑2) ∈ ℂ)
3 simprl 768 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐶 ∈ ℂ)
43sqcld 13932 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶↑2) ∈ ℂ)
52, 4mulcld 11065 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴↑2) · (𝐶↑2)) ∈ ℂ)
6 simprr 770 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐷 ∈ ℂ)
76sqcld 13932 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐷↑2) ∈ ℂ)
8 simplr 766 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐵 ∈ ℂ)
98sqcld 13932 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵↑2) ∈ ℂ)
107, 9mulcld 11065 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐷↑2) · (𝐵↑2)) ∈ ℂ)
112, 7mulcld 11065 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴↑2) · (𝐷↑2)) ∈ ℂ)
124, 9mulcld 11065 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶↑2) · (𝐵↑2)) ∈ ℂ)
135, 10, 11, 12add4d 11273 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐷↑2) · (𝐵↑2))) + (((𝐴↑2) · (𝐷↑2)) + ((𝐶↑2) · (𝐵↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐷↑2) · (𝐵↑2)) + ((𝐶↑2) · (𝐵↑2)))))
147, 9mulcomd 11066 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐷↑2) · (𝐵↑2)) = ((𝐵↑2) · (𝐷↑2)))
154, 9mulcomd 11066 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶↑2) · (𝐵↑2)) = ((𝐵↑2) · (𝐶↑2)))
1614, 15oveq12d 7331 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐷↑2) · (𝐵↑2)) + ((𝐶↑2) · (𝐵↑2))) = (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2))))
1716oveq2d 7329 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐷↑2) · (𝐵↑2)) + ((𝐶↑2) · (𝐵↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
1813, 17eqtrd 2777 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐷↑2) · (𝐵↑2))) + (((𝐴↑2) · (𝐷↑2)) + ((𝐶↑2) · (𝐵↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
192, 9, 4, 7muladdd 11503 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐷↑2) · (𝐵↑2))) + (((𝐴↑2) · (𝐷↑2)) + ((𝐶↑2) · (𝐵↑2)))))
201, 3mulcld 11065 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 · 𝐶) ∈ ℂ)
218, 6mulcld 11065 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐷) ∈ ℂ)
22 binom2sub 14005 . . . . 5 (((𝐴 · 𝐶) ∈ ℂ ∧ (𝐵 · 𝐷) ∈ ℂ) → (((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) = ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)))
2320, 21, 22syl2anc 584 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) = ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)))
241, 6mulcld 11065 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 · 𝐷) ∈ ℂ)
258, 3mulcld 11065 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐶) ∈ ℂ)
26 binom2 14003 . . . . 5 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ) → (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2) = ((((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2)))
2724, 25, 26syl2anc 584 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2) = ((((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2)))
2823, 27oveq12d 7331 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)) = (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)) + ((((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2))))
2920sqcld 13932 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶)↑2) ∈ ℂ)
30 2cnd 12121 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 2 ∈ ℂ)
3120, 21mulcld 11065 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) · (𝐵 · 𝐷)) ∈ ℂ)
3230, 31mulcld 11065 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷))) ∈ ℂ)
3329, 32subcld 11402 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) ∈ ℂ)
3421sqcld 13932 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐷)↑2) ∈ ℂ)
3524sqcld 13932 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷)↑2) ∈ ℂ)
3624, 25mulcld 11065 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷) · (𝐵 · 𝐶)) ∈ ℂ)
3730, 36mulcld 11065 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))) ∈ ℂ)
3835, 37addcld 11064 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) ∈ ℂ)
3925sqcld 13932 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐶)↑2) ∈ ℂ)
4033, 34, 38, 39add4d 11273 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)) + ((((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2))) = (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) + (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2))))
41 mul4r 11214 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) · (𝐵 · 𝐷)) = ((𝐴 · 𝐷) · (𝐵 · 𝐶)))
4241an4s 657 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) · (𝐵 · 𝐷)) = ((𝐴 · 𝐷) · (𝐵 · 𝐶)))
4342oveq2d 7329 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷))) = (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))
4443oveq2d 7329 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) = (((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))))
4544oveq1d 7328 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) = ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))))
4629, 37, 35nppcan3d 11429 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) = (((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)))
4745, 46eqtrd 2777 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) = (((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)))
488, 6sqmuld 13946 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐷)↑2) = ((𝐵↑2) · (𝐷↑2)))
498, 3sqmuld 13946 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐶)↑2) = ((𝐵↑2) · (𝐶↑2)))
5048, 49oveq12d 7331 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2)) = (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2))))
5147, 50oveq12d 7331 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) + (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2))) = ((((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
521, 3sqmuld 13946 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶)↑2) = ((𝐴↑2) · (𝐶↑2)))
531, 6sqmuld 13946 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷)↑2) = ((𝐴↑2) · (𝐷↑2)))
5452, 53oveq12d 7331 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)) = (((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))))
5554oveq1d 7328 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
5651, 55eqtrd 2777 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) + (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
5728, 40, 563eqtrd 2781 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
5818, 19, 573eqtr4d 2787 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  (class class class)co 7313  cc 10939   + caddc 10944   · cmul 10946  cmin 11275  2c2 12098  cexp 13852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-nn 12044  df-2 12106  df-n0 12304  df-z 12390  df-uz 12653  df-seq 13792  df-exp 13853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator