MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bhmafibid1cn Structured version   Visualization version   GIF version

Theorem bhmafibid1cn 15408
Description: The Brahmagupta-Fibonacci identity for complex numbers. Express the product of two sums of two squares as a sum of two squares. First result. (Contributed by Thierry Arnoux, 1-Feb-2020.) Generalization for complex numbers proposed by GL. (Revised by AV, 8-Jun-2023.)
Assertion
Ref Expression
bhmafibid1cn (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))

Proof of Theorem bhmafibid1cn
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐴 ∈ ℂ)
21sqcld 14085 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴↑2) ∈ ℂ)
3 simprl 770 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐶 ∈ ℂ)
43sqcld 14085 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶↑2) ∈ ℂ)
52, 4mulcld 11170 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴↑2) · (𝐶↑2)) ∈ ℂ)
6 simprr 772 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐷 ∈ ℂ)
76sqcld 14085 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐷↑2) ∈ ℂ)
8 simplr 768 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐵 ∈ ℂ)
98sqcld 14085 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵↑2) ∈ ℂ)
107, 9mulcld 11170 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐷↑2) · (𝐵↑2)) ∈ ℂ)
112, 7mulcld 11170 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴↑2) · (𝐷↑2)) ∈ ℂ)
124, 9mulcld 11170 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶↑2) · (𝐵↑2)) ∈ ℂ)
135, 10, 11, 12add4d 11379 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐷↑2) · (𝐵↑2))) + (((𝐴↑2) · (𝐷↑2)) + ((𝐶↑2) · (𝐵↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐷↑2) · (𝐵↑2)) + ((𝐶↑2) · (𝐵↑2)))))
147, 9mulcomd 11171 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐷↑2) · (𝐵↑2)) = ((𝐵↑2) · (𝐷↑2)))
154, 9mulcomd 11171 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶↑2) · (𝐵↑2)) = ((𝐵↑2) · (𝐶↑2)))
1614, 15oveq12d 7387 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐷↑2) · (𝐵↑2)) + ((𝐶↑2) · (𝐵↑2))) = (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2))))
1716oveq2d 7385 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐷↑2) · (𝐵↑2)) + ((𝐶↑2) · (𝐵↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
1813, 17eqtrd 2764 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴↑2) · (𝐶↑2)) + ((𝐷↑2) · (𝐵↑2))) + (((𝐴↑2) · (𝐷↑2)) + ((𝐶↑2) · (𝐵↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
192, 9, 4, 7muladdd 11612 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐷↑2) · (𝐵↑2))) + (((𝐴↑2) · (𝐷↑2)) + ((𝐶↑2) · (𝐵↑2)))))
201, 3mulcld 11170 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 · 𝐶) ∈ ℂ)
218, 6mulcld 11170 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐷) ∈ ℂ)
22 binom2sub 14161 . . . . 5 (((𝐴 · 𝐶) ∈ ℂ ∧ (𝐵 · 𝐷) ∈ ℂ) → (((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) = ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)))
2320, 21, 22syl2anc 584 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) = ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)))
241, 6mulcld 11170 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 · 𝐷) ∈ ℂ)
258, 3mulcld 11170 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐶) ∈ ℂ)
26 binom2 14158 . . . . 5 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ) → (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2) = ((((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2)))
2724, 25, 26syl2anc 584 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2) = ((((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2)))
2823, 27oveq12d 7387 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)) = (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)) + ((((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2))))
2920sqcld 14085 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶)↑2) ∈ ℂ)
30 2cnd 12240 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 2 ∈ ℂ)
3120, 21mulcld 11170 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) · (𝐵 · 𝐷)) ∈ ℂ)
3230, 31mulcld 11170 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷))) ∈ ℂ)
3329, 32subcld 11509 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) ∈ ℂ)
3421sqcld 14085 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐷)↑2) ∈ ℂ)
3524sqcld 14085 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷)↑2) ∈ ℂ)
3624, 25mulcld 11170 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷) · (𝐵 · 𝐶)) ∈ ℂ)
3730, 36mulcld 11170 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))) ∈ ℂ)
3835, 37addcld 11169 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) ∈ ℂ)
3925sqcld 14085 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐶)↑2) ∈ ℂ)
4033, 34, 38, 39add4d 11379 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + ((𝐵 · 𝐷)↑2)) + ((((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + ((𝐵 · 𝐶)↑2))) = (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) + (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2))))
41 mul4r 11319 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) · (𝐵 · 𝐷)) = ((𝐴 · 𝐷) · (𝐵 · 𝐶)))
4241an4s 660 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) · (𝐵 · 𝐷)) = ((𝐴 · 𝐷) · (𝐵 · 𝐶)))
4342oveq2d 7385 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷))) = (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))
4443oveq2d 7385 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) = (((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))))
4544oveq1d 7384 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) = ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))))
4629, 37, 35nppcan3d 11536 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) = (((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)))
4745, 46eqtrd 2764 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) = (((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)))
488, 6sqmuld 14099 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐷)↑2) = ((𝐵↑2) · (𝐷↑2)))
498, 3sqmuld 14099 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐶)↑2) = ((𝐵↑2) · (𝐶↑2)))
5048, 49oveq12d 7387 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2)) = (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2))))
5147, 50oveq12d 7387 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) + (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2))) = ((((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
521, 3sqmuld 14099 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶)↑2) = ((𝐴↑2) · (𝐶↑2)))
531, 6sqmuld 14099 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷)↑2) = ((𝐴↑2) · (𝐷↑2)))
5452, 53oveq12d 7387 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)) = (((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))))
5554oveq1d 7384 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶)↑2) + ((𝐴 · 𝐷)↑2)) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
5651, 55eqtrd 2764 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((((𝐴 · 𝐶)↑2) − (2 · ((𝐴 · 𝐶) · (𝐵 · 𝐷)))) + (((𝐴 · 𝐷)↑2) + (2 · ((𝐴 · 𝐷) · (𝐵 · 𝐶))))) + (((𝐵 · 𝐷)↑2) + ((𝐵 · 𝐶)↑2))) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
5728, 40, 563eqtrd 2768 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)) = ((((𝐴↑2) · (𝐶↑2)) + ((𝐴↑2) · (𝐷↑2))) + (((𝐵↑2) · (𝐷↑2)) + ((𝐵↑2) · (𝐶↑2)))))
5818, 19, 573eqtr4d 2774 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7369  cc 11042   + caddc 11047   · cmul 11049  cmin 11381  2c2 12217  cexp 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-seq 13943  df-exp 14003
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator