MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulpqf Structured version   Visualization version   GIF version

Theorem mulpqf 10712
Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulpqf ·pQ :((N × N) × (N × N))⟶(N × N)

Proof of Theorem mulpqf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 7852 . . . . 5 (𝑥 ∈ (N × N) → (1st𝑥) ∈ N)
2 xp1st 7852 . . . . 5 (𝑦 ∈ (N × N) → (1st𝑦) ∈ N)
3 mulclpi 10659 . . . . 5 (((1st𝑥) ∈ N ∧ (1st𝑦) ∈ N) → ((1st𝑥) ·N (1st𝑦)) ∈ N)
41, 2, 3syl2an 596 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st𝑥) ·N (1st𝑦)) ∈ N)
5 xp2nd 7853 . . . . 5 (𝑥 ∈ (N × N) → (2nd𝑥) ∈ N)
6 xp2nd 7853 . . . . 5 (𝑦 ∈ (N × N) → (2nd𝑦) ∈ N)
7 mulclpi 10659 . . . . 5 (((2nd𝑥) ∈ N ∧ (2nd𝑦) ∈ N) → ((2nd𝑥) ·N (2nd𝑦)) ∈ N)
85, 6, 7syl2an 596 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((2nd𝑥) ·N (2nd𝑦)) ∈ N)
94, 8opelxpd 5622 . . 3 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N))
109rgen2 3127 . 2 𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N)
11 df-mpq 10675 . . 3 ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
1211fmpo 7897 . 2 (∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N) ↔ ·pQ :((N × N) × (N × N))⟶(N × N))
1310, 12mpbi 229 1 ·pQ :((N × N) × (N × N))⟶(N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 396  wcel 2106  wral 3064  cop 4567   × cxp 5582  wf 6422  cfv 6426  (class class class)co 7267  1st c1st 7818  2nd c2nd 7819  Ncnpi 10610   ·N cmi 10612   ·pQ cmpq 10615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pr 5350  ax-un 7578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-oadd 8288  df-omul 8289  df-ni 10638  df-mi 10640  df-mpq 10675
This theorem is referenced by:  mulclnq  10713  mulnqf  10715  mulcompq  10718  mulerpq  10723  distrnq  10727
  Copyright terms: Public domain W3C validator