![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulpqf | Structured version Visualization version GIF version |
Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulpqf | ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xp1st 7477 | . . . . 5 ⊢ (𝑥 ∈ (N × N) → (1st ‘𝑥) ∈ N) | |
2 | xp1st 7477 | . . . . 5 ⊢ (𝑦 ∈ (N × N) → (1st ‘𝑦) ∈ N) | |
3 | mulclpi 10050 | . . . . 5 ⊢ (((1st ‘𝑥) ∈ N ∧ (1st ‘𝑦) ∈ N) → ((1st ‘𝑥) ·N (1st ‘𝑦)) ∈ N) | |
4 | 1, 2, 3 | syl2an 589 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st ‘𝑥) ·N (1st ‘𝑦)) ∈ N) |
5 | xp2nd 7478 | . . . . 5 ⊢ (𝑥 ∈ (N × N) → (2nd ‘𝑥) ∈ N) | |
6 | xp2nd 7478 | . . . . 5 ⊢ (𝑦 ∈ (N × N) → (2nd ‘𝑦) ∈ N) | |
7 | mulclpi 10050 | . . . . 5 ⊢ (((2nd ‘𝑥) ∈ N ∧ (2nd ‘𝑦) ∈ N) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) | |
8 | 5, 6, 7 | syl2an 589 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) |
9 | 4, 8 | opelxpd 5393 | . . 3 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N)) |
10 | 9 | rgen2a 3158 | . 2 ⊢ ∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N) |
11 | df-mpq 10066 | . . 3 ⊢ ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | |
12 | 11 | fmpt2 7517 | . 2 ⊢ (∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N) ↔ ·pQ :((N × N) × (N × N))⟶(N × N)) |
13 | 10, 12 | mpbi 222 | 1 ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 386 ∈ wcel 2106 ∀wral 3089 〈cop 4403 × cxp 5353 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 1st c1st 7443 2nd c2nd 7444 Ncnpi 10001 ·N cmi 10003 ·pQ cmpq 10006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-oadd 7847 df-omul 7848 df-ni 10029 df-mi 10031 df-mpq 10066 |
This theorem is referenced by: mulclnq 10104 mulnqf 10106 mulcompq 10109 mulerpq 10114 distrnq 10118 |
Copyright terms: Public domain | W3C validator |