![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulpqf | Structured version Visualization version GIF version |
Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulpqf | ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xp1st 8011 | . . . . 5 ⊢ (𝑥 ∈ (N × N) → (1st ‘𝑥) ∈ N) | |
2 | xp1st 8011 | . . . . 5 ⊢ (𝑦 ∈ (N × N) → (1st ‘𝑦) ∈ N) | |
3 | mulclpi 10894 | . . . . 5 ⊢ (((1st ‘𝑥) ∈ N ∧ (1st ‘𝑦) ∈ N) → ((1st ‘𝑥) ·N (1st ‘𝑦)) ∈ N) | |
4 | 1, 2, 3 | syl2an 595 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st ‘𝑥) ·N (1st ‘𝑦)) ∈ N) |
5 | xp2nd 8012 | . . . . 5 ⊢ (𝑥 ∈ (N × N) → (2nd ‘𝑥) ∈ N) | |
6 | xp2nd 8012 | . . . . 5 ⊢ (𝑦 ∈ (N × N) → (2nd ‘𝑦) ∈ N) | |
7 | mulclpi 10894 | . . . . 5 ⊢ (((2nd ‘𝑥) ∈ N ∧ (2nd ‘𝑦) ∈ N) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) | |
8 | 5, 6, 7 | syl2an 595 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) |
9 | 4, 8 | opelxpd 5715 | . . 3 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ⟨((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))⟩ ∈ (N × N)) |
10 | 9 | rgen2 3196 | . 2 ⊢ ∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))⟩ ∈ (N × N) |
11 | df-mpq 10910 | . . 3 ⊢ ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))⟩) | |
12 | 11 | fmpo 8058 | . 2 ⊢ (∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))⟩ ∈ (N × N) ↔ ·pQ :((N × N) × (N × N))⟶(N × N)) |
13 | 10, 12 | mpbi 229 | 1 ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2105 ∀wral 3060 ⟨cop 4634 × cxp 5674 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 1st c1st 7977 2nd c2nd 7978 Ncnpi 10845 ·N cmi 10847 ·pQ cmpq 10850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-oadd 8476 df-omul 8477 df-ni 10873 df-mi 10875 df-mpq 10910 |
This theorem is referenced by: mulclnq 10948 mulnqf 10950 mulcompq 10953 mulerpq 10958 distrnq 10962 |
Copyright terms: Public domain | W3C validator |