Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulpqf | Structured version Visualization version GIF version |
Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulpqf | ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xp1st 7852 | . . . . 5 ⊢ (𝑥 ∈ (N × N) → (1st ‘𝑥) ∈ N) | |
2 | xp1st 7852 | . . . . 5 ⊢ (𝑦 ∈ (N × N) → (1st ‘𝑦) ∈ N) | |
3 | mulclpi 10659 | . . . . 5 ⊢ (((1st ‘𝑥) ∈ N ∧ (1st ‘𝑦) ∈ N) → ((1st ‘𝑥) ·N (1st ‘𝑦)) ∈ N) | |
4 | 1, 2, 3 | syl2an 596 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st ‘𝑥) ·N (1st ‘𝑦)) ∈ N) |
5 | xp2nd 7853 | . . . . 5 ⊢ (𝑥 ∈ (N × N) → (2nd ‘𝑥) ∈ N) | |
6 | xp2nd 7853 | . . . . 5 ⊢ (𝑦 ∈ (N × N) → (2nd ‘𝑦) ∈ N) | |
7 | mulclpi 10659 | . . . . 5 ⊢ (((2nd ‘𝑥) ∈ N ∧ (2nd ‘𝑦) ∈ N) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) | |
8 | 5, 6, 7 | syl2an 596 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) |
9 | 4, 8 | opelxpd 5622 | . . 3 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N)) |
10 | 9 | rgen2 3127 | . 2 ⊢ ∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N) |
11 | df-mpq 10675 | . . 3 ⊢ ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | |
12 | 11 | fmpo 7897 | . 2 ⊢ (∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N) ↔ ·pQ :((N × N) × (N × N))⟶(N × N)) |
13 | 10, 12 | mpbi 229 | 1 ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2106 ∀wral 3064 〈cop 4567 × cxp 5582 ⟶wf 6422 ‘cfv 6426 (class class class)co 7267 1st c1st 7818 2nd c2nd 7819 Ncnpi 10610 ·N cmi 10612 ·pQ cmpq 10615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-oadd 8288 df-omul 8289 df-ni 10638 df-mi 10640 df-mpq 10675 |
This theorem is referenced by: mulclnq 10713 mulnqf 10715 mulcompq 10718 mulerpq 10723 distrnq 10727 |
Copyright terms: Public domain | W3C validator |