 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulpqf Structured version   Visualization version   GIF version

Theorem mulpqf 10103
 Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulpqf ·pQ :((N × N) × (N × N))⟶(N × N)

Proof of Theorem mulpqf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 7477 . . . . 5 (𝑥 ∈ (N × N) → (1st𝑥) ∈ N)
2 xp1st 7477 . . . . 5 (𝑦 ∈ (N × N) → (1st𝑦) ∈ N)
3 mulclpi 10050 . . . . 5 (((1st𝑥) ∈ N ∧ (1st𝑦) ∈ N) → ((1st𝑥) ·N (1st𝑦)) ∈ N)
41, 2, 3syl2an 589 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st𝑥) ·N (1st𝑦)) ∈ N)
5 xp2nd 7478 . . . . 5 (𝑥 ∈ (N × N) → (2nd𝑥) ∈ N)
6 xp2nd 7478 . . . . 5 (𝑦 ∈ (N × N) → (2nd𝑦) ∈ N)
7 mulclpi 10050 . . . . 5 (((2nd𝑥) ∈ N ∧ (2nd𝑦) ∈ N) → ((2nd𝑥) ·N (2nd𝑦)) ∈ N)
85, 6, 7syl2an 589 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((2nd𝑥) ·N (2nd𝑦)) ∈ N)
94, 8opelxpd 5393 . . 3 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N))
109rgen2a 3158 . 2 𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N)
11 df-mpq 10066 . . 3 ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
1211fmpt2 7517 . 2 (∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N) ↔ ·pQ :((N × N) × (N × N))⟶(N × N))
1310, 12mpbi 222 1 ·pQ :((N × N) × (N × N))⟶(N × N)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 386   ∈ wcel 2106  ∀wral 3089  ⟨cop 4403   × cxp 5353  ⟶wf 6131  ‘cfv 6135  (class class class)co 6922  1st c1st 7443  2nd c2nd 7444  Ncnpi 10001   ·N cmi 10003   ·pQ cmpq 10006 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-oadd 7847  df-omul 7848  df-ni 10029  df-mi 10031  df-mpq 10066 This theorem is referenced by:  mulclnq  10104  mulnqf  10106  mulcompq  10109  mulerpq  10114  distrnq  10118
 Copyright terms: Public domain W3C validator