| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulpqf | Structured version Visualization version GIF version | ||
| Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulpqf | ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xp1st 7953 | . . . . 5 ⊢ (𝑥 ∈ (N × N) → (1st ‘𝑥) ∈ N) | |
| 2 | xp1st 7953 | . . . . 5 ⊢ (𝑦 ∈ (N × N) → (1st ‘𝑦) ∈ N) | |
| 3 | mulclpi 10784 | . . . . 5 ⊢ (((1st ‘𝑥) ∈ N ∧ (1st ‘𝑦) ∈ N) → ((1st ‘𝑥) ·N (1st ‘𝑦)) ∈ N) | |
| 4 | 1, 2, 3 | syl2an 596 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st ‘𝑥) ·N (1st ‘𝑦)) ∈ N) |
| 5 | xp2nd 7954 | . . . . 5 ⊢ (𝑥 ∈ (N × N) → (2nd ‘𝑥) ∈ N) | |
| 6 | xp2nd 7954 | . . . . 5 ⊢ (𝑦 ∈ (N × N) → (2nd ‘𝑦) ∈ N) | |
| 7 | mulclpi 10784 | . . . . 5 ⊢ (((2nd ‘𝑥) ∈ N ∧ (2nd ‘𝑦) ∈ N) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) | |
| 8 | 5, 6, 7 | syl2an 596 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) |
| 9 | 4, 8 | opelxpd 5653 | . . 3 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N)) |
| 10 | 9 | rgen2 3172 | . 2 ⊢ ∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N) |
| 11 | df-mpq 10800 | . . 3 ⊢ ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | |
| 12 | 11 | fmpo 8000 | . 2 ⊢ (∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ (N × N) ↔ ·pQ :((N × N) × (N × N))⟶(N × N)) |
| 13 | 10, 12 | mpbi 230 | 1 ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2111 ∀wral 3047 〈cop 4579 × cxp 5612 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Ncnpi 10735 ·N cmi 10737 ·pQ cmpq 10740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-oadd 8389 df-omul 8390 df-ni 10763 df-mi 10765 df-mpq 10800 |
| This theorem is referenced by: mulclnq 10838 mulnqf 10840 mulcompq 10843 mulerpq 10848 distrnq 10852 |
| Copyright terms: Public domain | W3C validator |