![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulpqf | Structured version Visualization version GIF version |
Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulpqf | ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xp1st 8004 | . . . . 5 ⊢ (𝑥 ∈ (N × N) → (1st ‘𝑥) ∈ N) | |
2 | xp1st 8004 | . . . . 5 ⊢ (𝑦 ∈ (N × N) → (1st ‘𝑦) ∈ N) | |
3 | mulclpi 10885 | . . . . 5 ⊢ (((1st ‘𝑥) ∈ N ∧ (1st ‘𝑦) ∈ N) → ((1st ‘𝑥) ·N (1st ‘𝑦)) ∈ N) | |
4 | 1, 2, 3 | syl2an 597 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st ‘𝑥) ·N (1st ‘𝑦)) ∈ N) |
5 | xp2nd 8005 | . . . . 5 ⊢ (𝑥 ∈ (N × N) → (2nd ‘𝑥) ∈ N) | |
6 | xp2nd 8005 | . . . . 5 ⊢ (𝑦 ∈ (N × N) → (2nd ‘𝑦) ∈ N) | |
7 | mulclpi 10885 | . . . . 5 ⊢ (((2nd ‘𝑥) ∈ N ∧ (2nd ‘𝑦) ∈ N) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) | |
8 | 5, 6, 7 | syl2an 597 | . . . 4 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((2nd ‘𝑥) ·N (2nd ‘𝑦)) ∈ N) |
9 | 4, 8 | opelxpd 5714 | . . 3 ⊢ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ⟨((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))⟩ ∈ (N × N)) |
10 | 9 | rgen2 3198 | . 2 ⊢ ∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))⟩ ∈ (N × N) |
11 | df-mpq 10901 | . . 3 ⊢ ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))⟩) | |
12 | 11 | fmpo 8051 | . 2 ⊢ (∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))⟩ ∈ (N × N) ↔ ·pQ :((N × N) × (N × N))⟶(N × N)) |
13 | 10, 12 | mpbi 229 | 1 ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∈ wcel 2107 ∀wral 3062 ⟨cop 4634 × cxp 5674 ⟶wf 6537 ‘cfv 6541 (class class class)co 7406 1st c1st 7970 2nd c2nd 7971 Ncnpi 10836 ·N cmi 10838 ·pQ cmpq 10841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-1st 7972 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-oadd 8467 df-omul 8468 df-ni 10864 df-mi 10866 df-mpq 10901 |
This theorem is referenced by: mulclnq 10939 mulnqf 10941 mulcompq 10944 mulerpq 10949 distrnq 10953 |
Copyright terms: Public domain | W3C validator |