| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ceilbi | Structured version Visualization version GIF version | ||
| Description: A condition equivalent to ceiling. Analogous to flbi 13720. (Contributed by AV, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| ceilbi | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌈‘𝐴) = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 < (𝐴 + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceilval 13742 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) = -(⌊‘-𝐴)) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌈‘𝐴) = -(⌊‘-𝐴)) |
| 3 | 2 | eqeq1d 2733 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌈‘𝐴) = 𝐵 ↔ -(⌊‘-𝐴) = 𝐵)) |
| 4 | renegcl 11424 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 5 | 4 | flcld 13702 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘-𝐴) ∈ ℤ) |
| 6 | 5 | zcnd 12578 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘-𝐴) ∈ ℂ) |
| 7 | zcn 12473 | . . 3 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
| 8 | negcon1 11413 | . . 3 ⊢ (((⌊‘-𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-(⌊‘-𝐴) = 𝐵 ↔ -𝐵 = (⌊‘-𝐴))) | |
| 9 | 6, 7, 8 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (-(⌊‘-𝐴) = 𝐵 ↔ -𝐵 = (⌊‘-𝐴))) |
| 10 | eqcom 2738 | . . . 4 ⊢ (-𝐵 = (⌊‘-𝐴) ↔ (⌊‘-𝐴) = -𝐵) | |
| 11 | 10 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (-𝐵 = (⌊‘-𝐴) ↔ (⌊‘-𝐴) = -𝐵)) |
| 12 | znegcl 12507 | . . . 4 ⊢ (𝐵 ∈ ℤ → -𝐵 ∈ ℤ) | |
| 13 | flbi 13720 | . . . 4 ⊢ ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℤ) → ((⌊‘-𝐴) = -𝐵 ↔ (-𝐵 ≤ -𝐴 ∧ -𝐴 < (-𝐵 + 1)))) | |
| 14 | 4, 12, 13 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘-𝐴) = -𝐵 ↔ (-𝐵 ≤ -𝐴 ∧ -𝐴 < (-𝐵 + 1)))) |
| 15 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ) | |
| 16 | zre 12472 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
| 17 | 16 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ) |
| 18 | 15, 17 | lenegd 11696 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) |
| 19 | 18 | bicomd 223 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (-𝐵 ≤ -𝐴 ↔ 𝐴 ≤ 𝐵)) |
| 20 | peano2rem 11428 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ) | |
| 21 | 16, 20 | syl 17 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℝ) |
| 22 | 21 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 − 1) ∈ ℝ) |
| 23 | 22, 15 | ltnegd 11695 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵 − 1) < 𝐴 ↔ -𝐴 < -(𝐵 − 1))) |
| 24 | 1red 11113 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℝ) | |
| 25 | 17, 24, 15 | ltsubaddd 11713 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵 − 1) < 𝐴 ↔ 𝐵 < (𝐴 + 1))) |
| 26 | 1cnd 11107 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 1 ∈ ℂ) | |
| 27 | negsubdi 11417 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐵 − 1) = (-𝐵 + 1)) | |
| 28 | 7, 26, 27 | syl2anr 597 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → -(𝐵 − 1) = (-𝐵 + 1)) |
| 29 | 28 | breq2d 5101 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (-𝐴 < -(𝐵 − 1) ↔ -𝐴 < (-𝐵 + 1))) |
| 30 | 23, 25, 29 | 3bitr3rd 310 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (-𝐴 < (-𝐵 + 1) ↔ 𝐵 < (𝐴 + 1))) |
| 31 | 19, 30 | anbi12d 632 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((-𝐵 ≤ -𝐴 ∧ -𝐴 < (-𝐵 + 1)) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 < (𝐴 + 1)))) |
| 32 | 11, 14, 31 | 3bitrd 305 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (-𝐵 = (⌊‘-𝐴) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 < (𝐴 + 1)))) |
| 33 | 3, 9, 32 | 3bitrd 305 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌈‘𝐴) = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 < (𝐴 + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 1c1 11007 + caddc 11009 < clt 11146 ≤ cle 11147 − cmin 11344 -cneg 11345 ℤcz 12468 ⌊cfl 13694 ⌈cceil 13695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fl 13696 df-ceil 13697 |
| This theorem is referenced by: ceilhalf1 47433 |
| Copyright terms: Public domain | W3C validator |