| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ceilbi | Structured version Visualization version GIF version | ||
| Description: A condition equivalent to ceiling. Analogous to flbi 13785. (Contributed by AV, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| ceilbi | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌈‘𝐴) = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 < (𝐴 + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceilval 13807 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌈‘𝐴) = -(⌊‘-𝐴)) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌈‘𝐴) = -(⌊‘-𝐴)) |
| 3 | 2 | eqeq1d 2732 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌈‘𝐴) = 𝐵 ↔ -(⌊‘-𝐴) = 𝐵)) |
| 4 | renegcl 11492 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 5 | 4 | flcld 13767 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘-𝐴) ∈ ℤ) |
| 6 | 5 | zcnd 12646 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘-𝐴) ∈ ℂ) |
| 7 | zcn 12541 | . . 3 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
| 8 | negcon1 11481 | . . 3 ⊢ (((⌊‘-𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-(⌊‘-𝐴) = 𝐵 ↔ -𝐵 = (⌊‘-𝐴))) | |
| 9 | 6, 7, 8 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (-(⌊‘-𝐴) = 𝐵 ↔ -𝐵 = (⌊‘-𝐴))) |
| 10 | eqcom 2737 | . . . 4 ⊢ (-𝐵 = (⌊‘-𝐴) ↔ (⌊‘-𝐴) = -𝐵) | |
| 11 | 10 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (-𝐵 = (⌊‘-𝐴) ↔ (⌊‘-𝐴) = -𝐵)) |
| 12 | znegcl 12575 | . . . 4 ⊢ (𝐵 ∈ ℤ → -𝐵 ∈ ℤ) | |
| 13 | flbi 13785 | . . . 4 ⊢ ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℤ) → ((⌊‘-𝐴) = -𝐵 ↔ (-𝐵 ≤ -𝐴 ∧ -𝐴 < (-𝐵 + 1)))) | |
| 14 | 4, 12, 13 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘-𝐴) = -𝐵 ↔ (-𝐵 ≤ -𝐴 ∧ -𝐴 < (-𝐵 + 1)))) |
| 15 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ) | |
| 16 | zre 12540 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
| 17 | 16 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ) |
| 18 | 15, 17 | lenegd 11764 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) |
| 19 | 18 | bicomd 223 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (-𝐵 ≤ -𝐴 ↔ 𝐴 ≤ 𝐵)) |
| 20 | peano2rem 11496 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ) | |
| 21 | 16, 20 | syl 17 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℝ) |
| 22 | 21 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 − 1) ∈ ℝ) |
| 23 | 22, 15 | ltnegd 11763 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵 − 1) < 𝐴 ↔ -𝐴 < -(𝐵 − 1))) |
| 24 | 1red 11182 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℝ) | |
| 25 | 17, 24, 15 | ltsubaddd 11781 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵 − 1) < 𝐴 ↔ 𝐵 < (𝐴 + 1))) |
| 26 | 1cnd 11176 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 1 ∈ ℂ) | |
| 27 | negsubdi 11485 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐵 − 1) = (-𝐵 + 1)) | |
| 28 | 7, 26, 27 | syl2anr 597 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → -(𝐵 − 1) = (-𝐵 + 1)) |
| 29 | 28 | breq2d 5122 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (-𝐴 < -(𝐵 − 1) ↔ -𝐴 < (-𝐵 + 1))) |
| 30 | 23, 25, 29 | 3bitr3rd 310 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (-𝐴 < (-𝐵 + 1) ↔ 𝐵 < (𝐴 + 1))) |
| 31 | 19, 30 | anbi12d 632 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((-𝐵 ≤ -𝐴 ∧ -𝐴 < (-𝐵 + 1)) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 < (𝐴 + 1)))) |
| 32 | 11, 14, 31 | 3bitrd 305 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (-𝐵 = (⌊‘-𝐴) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 < (𝐴 + 1)))) |
| 33 | 3, 9, 32 | 3bitrd 305 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌈‘𝐴) = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 < (𝐴 + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 1c1 11076 + caddc 11078 < clt 11215 ≤ cle 11216 − cmin 11412 -cneg 11413 ℤcz 12536 ⌊cfl 13759 ⌈cceil 13760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fl 13761 df-ceil 13762 |
| This theorem is referenced by: ceilhalf1 47339 |
| Copyright terms: Public domain | W3C validator |