| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negcl | Structured version Visualization version GIF version | ||
| Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
| Ref | Expression |
|---|---|
| negcl | ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11469 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | 0cn 11227 | . . 3 ⊢ 0 ∈ ℂ | |
| 3 | subcl 11481 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ) | |
| 4 | 2, 3 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ) |
| 5 | 1, 4 | eqeltrid 2838 | 1 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 0cc0 11129 − cmin 11466 -cneg 11467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 df-neg 11469 |
| This theorem is referenced by: negicn 11483 negcon1 11535 negdi 11540 negdi2 11541 negsubdi2 11542 neg2sub 11543 negcli 11551 negcld 11581 mulneg2 11674 mul2neg 11676 mulsub 11680 divneg 11933 divsubdir 11935 divsubdiv 11957 eqneg 11961 div2neg 11964 divneg2 11965 zeo 12679 sqneg 14133 binom2sub 14238 shftval4 15096 shftcan1 15102 shftcan2 15103 crim 15134 resub 15146 imsub 15154 cjneg 15166 cjsub 15168 absneg 15296 abs2dif2 15352 sqreulem 15378 sqreu 15379 subcn2 15611 risefallfac 16040 fallrisefac 16041 fallfac0 16044 binomrisefac 16058 efcan 16112 efne0OLD 16115 efneg 16116 efsub 16118 sinneg 16164 cosneg 16165 tanneg 16166 efmival 16171 sinhval 16172 coshval 16173 sinsub 16186 cossub 16187 sincossq 16194 cnaddablx 19849 cnaddabl 19850 cnaddinv 19852 cncrng 21351 cncrngOLD 21352 cnfldneg 21358 cnlmod 25091 cnstrcvs 25092 cncvs 25096 plyremlem 26264 reeff1o 26409 sin2pim 26446 cos2pim 26447 cxpsub 26643 cxpsqrt 26664 logrec 26725 asinlem3 26833 asinneg 26848 acosneg 26849 sinasin 26851 asinsin 26854 cosasin 26866 atantan 26885 cnaddabloOLD 30562 hvsubdistr2 31031 spanunsni 31560 ltflcei 37632 dvasin 37728 lcmineqlem1 42042 sqrtcvallem4 43663 sub2times 45301 cosknegpi 45898 etransclem18 46281 etransclem46 46309 addsubeq0 47325 altgsumbcALT 48328 1subrec1sub 48685 sinhpcosh 49604 |
| Copyright terms: Public domain | W3C validator |