| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negcl | Structured version Visualization version GIF version | ||
| Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
| Ref | Expression |
|---|---|
| negcl | ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11347 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | 0cn 11104 | . . 3 ⊢ 0 ∈ ℂ | |
| 3 | subcl 11359 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ) | |
| 4 | 2, 3 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ) |
| 5 | 1, 4 | eqeltrid 2835 | 1 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 0cc0 11006 − cmin 11344 -cneg 11345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-neg 11347 |
| This theorem is referenced by: negicn 11361 negcon1 11413 negdi 11418 negdi2 11419 negsubdi2 11420 neg2sub 11421 negcli 11429 negcld 11459 mulneg2 11554 mul2neg 11556 mulsub 11560 divneg 11813 divsubdir 11815 divsubdiv 11837 eqneg 11841 div2neg 11844 divneg2 11845 zeo 12559 sqneg 14022 binom2sub 14127 shftval4 14984 shftcan1 14990 shftcan2 14991 crim 15022 resub 15034 imsub 15042 cjneg 15054 cjsub 15056 absneg 15184 abs2dif2 15241 sqreulem 15267 sqreu 15268 subcn2 15502 risefallfac 15931 fallrisefac 15932 fallfac0 15935 binomrisefac 15949 efcan 16003 efne0OLD 16006 efneg 16007 efsub 16009 sinneg 16055 cosneg 16056 tanneg 16057 efmival 16062 sinhval 16063 coshval 16064 sinsub 16077 cossub 16078 sincossq 16085 cnaddablx 19780 cnaddabl 19781 cnaddinv 19783 cncrng 21325 cncrngOLD 21326 cnfldneg 21332 cnlmod 25067 cnstrcvs 25068 cncvs 25072 plyremlem 26239 reeff1o 26384 sin2pim 26421 cos2pim 26422 cxpsub 26618 cxpsqrt 26639 logrec 26700 asinlem3 26808 asinneg 26823 acosneg 26824 sinasin 26826 asinsin 26829 cosasin 26841 atantan 26860 cnaddabloOLD 30561 hvsubdistr2 31030 spanunsni 31559 ltflcei 37658 dvasin 37754 lcmineqlem1 42132 sqrtcvallem4 43742 sub2times 45384 cosknegpi 45977 etransclem18 46360 etransclem46 46388 addsubeq0 47406 altgsumbcALT 48463 1subrec1sub 48816 sinhpcosh 49851 |
| Copyright terms: Public domain | W3C validator |