Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negcl | Structured version Visualization version GIF version |
Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
Ref | Expression |
---|---|
negcl | ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11208 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
2 | 0cn 10968 | . . 3 ⊢ 0 ∈ ℂ | |
3 | subcl 11220 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ) | |
4 | 2, 3 | mpan 687 | . 2 ⊢ (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ) |
5 | 1, 4 | eqeltrid 2845 | 1 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 (class class class)co 7271 ℂcc 10870 0cc0 10872 − cmin 11205 -cneg 11206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-ltxr 11015 df-sub 11207 df-neg 11208 |
This theorem is referenced by: negicn 11222 negcon1 11273 negdi 11278 negdi2 11279 negsubdi2 11280 neg2sub 11281 negcli 11289 negcld 11319 mulneg2 11412 mul2neg 11414 mulsub 11418 divneg 11667 divsubdir 11669 divsubdiv 11691 eqneg 11695 div2neg 11698 divneg2 11699 zeo 12406 sqneg 13834 binom2sub 13933 shftval4 14786 shftcan1 14792 shftcan2 14793 crim 14824 resub 14836 imsub 14844 cjneg 14856 cjsub 14858 absneg 14987 abs2dif2 15043 sqreulem 15069 sqreu 15070 subcn2 15302 risefallfac 15732 fallrisefac 15733 fallfac0 15736 binomrisefac 15750 efcan 15803 efne0 15804 efneg 15805 efsub 15807 sinneg 15853 cosneg 15854 tanneg 15855 efmival 15860 sinhval 15861 coshval 15862 sinsub 15875 cossub 15876 sincossq 15883 cnaddablx 19467 cnaddabl 19468 cnaddinv 19470 cncrng 20617 cnfldneg 20622 cnlmod 24301 cnstrcvs 24302 cncvs 24306 plyremlem 25462 reeff1o 25604 sin2pim 25640 cos2pim 25641 cxpsub 25835 cxpsqrt 25856 logrec 25911 asinlem3 26019 asinneg 26034 acosneg 26035 sinasin 26037 asinsin 26040 cosasin 26052 atantan 26071 cnaddabloOLD 28939 hvsubdistr2 29408 spanunsni 29937 ltflcei 35761 dvasin 35857 lcmineqlem1 40034 sqrtcvallem4 41217 sub2times 42783 cosknegpi 43381 etransclem18 43764 etransclem46 43792 addsubeq0 44757 altgsumbcALT 45658 1subrec1sub 46020 sinhpcosh 46411 |
Copyright terms: Public domain | W3C validator |