| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negcl | Structured version Visualization version GIF version | ||
| Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
| Ref | Expression |
|---|---|
| negcl | ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11477 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | 0cn 11235 | . . 3 ⊢ 0 ∈ ℂ | |
| 3 | subcl 11489 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ) | |
| 4 | 2, 3 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ) |
| 5 | 1, 4 | eqeltrid 2837 | 1 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 (class class class)co 7413 ℂcc 11135 0cc0 11137 − cmin 11474 -cneg 11475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-ltxr 11282 df-sub 11476 df-neg 11477 |
| This theorem is referenced by: negicn 11491 negcon1 11543 negdi 11548 negdi2 11549 negsubdi2 11550 neg2sub 11551 negcli 11559 negcld 11589 mulneg2 11682 mul2neg 11684 mulsub 11688 divneg 11941 divsubdir 11943 divsubdiv 11965 eqneg 11969 div2neg 11972 divneg2 11973 zeo 12687 sqneg 14138 binom2sub 14241 shftval4 15098 shftcan1 15104 shftcan2 15105 crim 15136 resub 15148 imsub 15156 cjneg 15168 cjsub 15170 absneg 15298 abs2dif2 15354 sqreulem 15380 sqreu 15381 subcn2 15613 risefallfac 16042 fallrisefac 16043 fallfac0 16046 binomrisefac 16060 efcan 16114 efne0 16115 efneg 16116 efsub 16118 sinneg 16164 cosneg 16165 tanneg 16166 efmival 16171 sinhval 16172 coshval 16173 sinsub 16186 cossub 16187 sincossq 16194 cnaddablx 19854 cnaddabl 19855 cnaddinv 19857 cncrng 21363 cncrngOLD 21364 cnfldneg 21370 cnlmod 25109 cnstrcvs 25110 cncvs 25114 plyremlem 26282 reeff1o 26427 sin2pim 26463 cos2pim 26464 cxpsub 26660 cxpsqrt 26681 logrec 26742 asinlem3 26850 asinneg 26865 acosneg 26866 sinasin 26868 asinsin 26871 cosasin 26883 atantan 26902 cnaddabloOLD 30528 hvsubdistr2 30997 spanunsni 31526 ltflcei 37574 dvasin 37670 lcmineqlem1 41989 sqrtcvallem4 43614 sub2times 45241 cosknegpi 45841 etransclem18 46224 etransclem46 46252 addsubeq0 47266 altgsumbcALT 48227 1subrec1sub 48584 sinhpcosh 49267 |
| Copyright terms: Public domain | W3C validator |