![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negcl | Structured version Visualization version GIF version |
Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
Ref | Expression |
---|---|
negcl | ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11523 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
2 | 0cn 11282 | . . 3 ⊢ 0 ∈ ℂ | |
3 | subcl 11535 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ) | |
4 | 2, 3 | mpan 689 | . 2 ⊢ (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ) |
5 | 1, 4 | eqeltrid 2848 | 1 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 0cc0 11184 − cmin 11520 -cneg 11521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 |
This theorem is referenced by: negicn 11537 negcon1 11588 negdi 11593 negdi2 11594 negsubdi2 11595 neg2sub 11596 negcli 11604 negcld 11634 mulneg2 11727 mul2neg 11729 mulsub 11733 divneg 11986 divsubdir 11988 divsubdiv 12010 eqneg 12014 div2neg 12017 divneg2 12018 zeo 12729 sqneg 14166 binom2sub 14269 shftval4 15126 shftcan1 15132 shftcan2 15133 crim 15164 resub 15176 imsub 15184 cjneg 15196 cjsub 15198 absneg 15326 abs2dif2 15382 sqreulem 15408 sqreu 15409 subcn2 15641 risefallfac 16072 fallrisefac 16073 fallfac0 16076 binomrisefac 16090 efcan 16144 efne0 16145 efneg 16146 efsub 16148 sinneg 16194 cosneg 16195 tanneg 16196 efmival 16201 sinhval 16202 coshval 16203 sinsub 16216 cossub 16217 sincossq 16224 cnaddablx 19910 cnaddabl 19911 cnaddinv 19913 cncrng 21424 cncrngOLD 21425 cnfldneg 21431 cnlmod 25192 cnstrcvs 25193 cncvs 25197 plyremlem 26364 reeff1o 26509 sin2pim 26545 cos2pim 26546 cxpsub 26742 cxpsqrt 26763 logrec 26824 asinlem3 26932 asinneg 26947 acosneg 26948 sinasin 26950 asinsin 26953 cosasin 26965 atantan 26984 cnaddabloOLD 30613 hvsubdistr2 31082 spanunsni 31611 ltflcei 37568 dvasin 37664 lcmineqlem1 41986 sqrtcvallem4 43601 sub2times 45187 cosknegpi 45790 etransclem18 46173 etransclem46 46201 addsubeq0 47211 altgsumbcALT 48078 1subrec1sub 48439 sinhpcosh 48832 |
Copyright terms: Public domain | W3C validator |