Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negcl | Structured version Visualization version GIF version |
Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
Ref | Expression |
---|---|
negcl | ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11208 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
2 | 0cn 10967 | . . 3 ⊢ 0 ∈ ℂ | |
3 | subcl 11220 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ) | |
4 | 2, 3 | mpan 687 | . 2 ⊢ (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ) |
5 | 1, 4 | eqeltrid 2843 | 1 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 0cc0 10871 − cmin 11205 -cneg 11206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-sub 11207 df-neg 11208 |
This theorem is referenced by: negicn 11222 negcon1 11273 negdi 11278 negdi2 11279 negsubdi2 11280 neg2sub 11281 negcli 11289 negcld 11319 mulneg2 11412 mul2neg 11414 mulsub 11418 divneg 11667 divsubdir 11669 divsubdiv 11691 eqneg 11695 div2neg 11698 divneg2 11699 zeo 12406 sqneg 13836 binom2sub 13935 shftval4 14788 shftcan1 14794 shftcan2 14795 crim 14826 resub 14838 imsub 14846 cjneg 14858 cjsub 14860 absneg 14989 abs2dif2 15045 sqreulem 15071 sqreu 15072 subcn2 15304 risefallfac 15734 fallrisefac 15735 fallfac0 15738 binomrisefac 15752 efcan 15805 efne0 15806 efneg 15807 efsub 15809 sinneg 15855 cosneg 15856 tanneg 15857 efmival 15862 sinhval 15863 coshval 15864 sinsub 15877 cossub 15878 sincossq 15885 cnaddablx 19469 cnaddabl 19470 cnaddinv 19472 cncrng 20619 cnfldneg 20624 cnlmod 24303 cnstrcvs 24304 cncvs 24308 plyremlem 25464 reeff1o 25606 sin2pim 25642 cos2pim 25643 cxpsub 25837 cxpsqrt 25858 logrec 25913 asinlem3 26021 asinneg 26036 acosneg 26037 sinasin 26039 asinsin 26042 cosasin 26054 atantan 26073 cnaddabloOLD 28943 hvsubdistr2 29412 spanunsni 29941 ltflcei 35765 dvasin 35861 lcmineqlem1 40037 sqrtcvallem4 41247 sub2times 42813 cosknegpi 43410 etransclem18 43793 etransclem46 43821 addsubeq0 44788 altgsumbcALT 45689 1subrec1sub 46051 sinhpcosh 46442 |
Copyright terms: Public domain | W3C validator |