| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negcl | Structured version Visualization version GIF version | ||
| Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
| Ref | Expression |
|---|---|
| negcl | ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11415 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | 0cn 11173 | . . 3 ⊢ 0 ∈ ℂ | |
| 3 | subcl 11427 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ) | |
| 4 | 2, 3 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ) |
| 5 | 1, 4 | eqeltrid 2833 | 1 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 0cc0 11075 − cmin 11412 -cneg 11413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 |
| This theorem is referenced by: negicn 11429 negcon1 11481 negdi 11486 negdi2 11487 negsubdi2 11488 neg2sub 11489 negcli 11497 negcld 11527 mulneg2 11622 mul2neg 11624 mulsub 11628 divneg 11881 divsubdir 11883 divsubdiv 11905 eqneg 11909 div2neg 11912 divneg2 11913 zeo 12627 sqneg 14087 binom2sub 14192 shftval4 15050 shftcan1 15056 shftcan2 15057 crim 15088 resub 15100 imsub 15108 cjneg 15120 cjsub 15122 absneg 15250 abs2dif2 15307 sqreulem 15333 sqreu 15334 subcn2 15568 risefallfac 15997 fallrisefac 15998 fallfac0 16001 binomrisefac 16015 efcan 16069 efne0OLD 16072 efneg 16073 efsub 16075 sinneg 16121 cosneg 16122 tanneg 16123 efmival 16128 sinhval 16129 coshval 16130 sinsub 16143 cossub 16144 sincossq 16151 cnaddablx 19805 cnaddabl 19806 cnaddinv 19808 cncrng 21307 cncrngOLD 21308 cnfldneg 21314 cnlmod 25047 cnstrcvs 25048 cncvs 25052 plyremlem 26219 reeff1o 26364 sin2pim 26401 cos2pim 26402 cxpsub 26598 cxpsqrt 26619 logrec 26680 asinlem3 26788 asinneg 26803 acosneg 26804 sinasin 26806 asinsin 26809 cosasin 26821 atantan 26840 cnaddabloOLD 30517 hvsubdistr2 30986 spanunsni 31515 ltflcei 37609 dvasin 37705 lcmineqlem1 42024 sqrtcvallem4 43635 sub2times 45278 cosknegpi 45874 etransclem18 46257 etransclem46 46285 addsubeq0 47301 altgsumbcALT 48345 1subrec1sub 48698 sinhpcosh 49733 |
| Copyright terms: Public domain | W3C validator |