Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negcl | Structured version Visualization version GIF version |
Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
Ref | Expression |
---|---|
negcl | ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11138 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
2 | 0cn 10898 | . . 3 ⊢ 0 ∈ ℂ | |
3 | subcl 11150 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ) | |
4 | 2, 3 | mpan 686 | . 2 ⊢ (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ) |
5 | 1, 4 | eqeltrid 2843 | 1 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 0cc0 10802 − cmin 11135 -cneg 11136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 |
This theorem is referenced by: negicn 11152 negcon1 11203 negdi 11208 negdi2 11209 negsubdi2 11210 neg2sub 11211 negcli 11219 negcld 11249 mulneg2 11342 mul2neg 11344 mulsub 11348 divneg 11597 divsubdir 11599 divsubdiv 11621 eqneg 11625 div2neg 11628 divneg2 11629 zeo 12336 sqneg 13764 binom2sub 13863 shftval4 14716 shftcan1 14722 shftcan2 14723 crim 14754 resub 14766 imsub 14774 cjneg 14786 cjsub 14788 absneg 14917 abs2dif2 14973 sqreulem 14999 sqreu 15000 subcn2 15232 risefallfac 15662 fallrisefac 15663 fallfac0 15666 binomrisefac 15680 efcan 15733 efne0 15734 efneg 15735 efsub 15737 sinneg 15783 cosneg 15784 tanneg 15785 efmival 15790 sinhval 15791 coshval 15792 sinsub 15805 cossub 15806 sincossq 15813 cnaddablx 19384 cnaddabl 19385 cnaddinv 19387 cncrng 20531 cnfldneg 20536 cnlmod 24209 cnstrcvs 24210 cncvs 24214 plyremlem 25369 reeff1o 25511 sin2pim 25547 cos2pim 25548 cxpsub 25742 cxpsqrt 25763 logrec 25818 asinlem3 25926 asinneg 25941 acosneg 25942 sinasin 25944 asinsin 25947 cosasin 25959 atantan 25978 cnaddabloOLD 28844 hvsubdistr2 29313 spanunsni 29842 ltflcei 35692 dvasin 35788 lcmineqlem1 39965 sqrtcvallem4 41136 sub2times 42702 cosknegpi 43300 etransclem18 43683 etransclem46 43711 addsubeq0 44676 altgsumbcALT 45577 1subrec1sub 45939 sinhpcosh 46328 |
Copyright terms: Public domain | W3C validator |