| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negcl | Structured version Visualization version GIF version | ||
| Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
| Ref | Expression |
|---|---|
| negcl | ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11384 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | 0cn 11142 | . . 3 ⊢ 0 ∈ ℂ | |
| 3 | subcl 11396 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ) | |
| 4 | 2, 3 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ) |
| 5 | 1, 4 | eqeltrid 2832 | 1 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 0cc0 11044 − cmin 11381 -cneg 11382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 |
| This theorem is referenced by: negicn 11398 negcon1 11450 negdi 11455 negdi2 11456 negsubdi2 11457 neg2sub 11458 negcli 11466 negcld 11496 mulneg2 11591 mul2neg 11593 mulsub 11597 divneg 11850 divsubdir 11852 divsubdiv 11874 eqneg 11878 div2neg 11881 divneg2 11882 zeo 12596 sqneg 14056 binom2sub 14161 shftval4 15019 shftcan1 15025 shftcan2 15026 crim 15057 resub 15069 imsub 15077 cjneg 15089 cjsub 15091 absneg 15219 abs2dif2 15276 sqreulem 15302 sqreu 15303 subcn2 15537 risefallfac 15966 fallrisefac 15967 fallfac0 15970 binomrisefac 15984 efcan 16038 efne0OLD 16041 efneg 16042 efsub 16044 sinneg 16090 cosneg 16091 tanneg 16092 efmival 16097 sinhval 16098 coshval 16099 sinsub 16112 cossub 16113 sincossq 16120 cnaddablx 19782 cnaddabl 19783 cnaddinv 19785 cncrng 21330 cncrngOLD 21331 cnfldneg 21337 cnlmod 25073 cnstrcvs 25074 cncvs 25078 plyremlem 26245 reeff1o 26390 sin2pim 26427 cos2pim 26428 cxpsub 26624 cxpsqrt 26645 logrec 26706 asinlem3 26814 asinneg 26829 acosneg 26830 sinasin 26832 asinsin 26835 cosasin 26847 atantan 26866 cnaddabloOLD 30560 hvsubdistr2 31029 spanunsni 31558 ltflcei 37595 dvasin 37691 lcmineqlem1 42010 sqrtcvallem4 43621 sub2times 45264 cosknegpi 45860 etransclem18 46243 etransclem46 46271 addsubeq0 47290 altgsumbcALT 48334 1subrec1sub 48687 sinhpcosh 49722 |
| Copyright terms: Public domain | W3C validator |