| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negcl | Structured version Visualization version GIF version | ||
| Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
| Ref | Expression |
|---|---|
| negcl | ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11350 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | 0cn 11107 | . . 3 ⊢ 0 ∈ ℂ | |
| 3 | subcl 11362 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0 − 𝐴) ∈ ℂ) | |
| 4 | 2, 3 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℂ → (0 − 𝐴) ∈ ℂ) |
| 5 | 1, 4 | eqeltrid 2832 | 1 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 0cc0 11009 − cmin 11347 -cneg 11348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-neg 11350 |
| This theorem is referenced by: negicn 11364 negcon1 11416 negdi 11421 negdi2 11422 negsubdi2 11423 neg2sub 11424 negcli 11432 negcld 11462 mulneg2 11557 mul2neg 11559 mulsub 11563 divneg 11816 divsubdir 11818 divsubdiv 11840 eqneg 11844 div2neg 11847 divneg2 11848 zeo 12562 sqneg 14022 binom2sub 14127 shftval4 14984 shftcan1 14990 shftcan2 14991 crim 15022 resub 15034 imsub 15042 cjneg 15054 cjsub 15056 absneg 15184 abs2dif2 15241 sqreulem 15267 sqreu 15268 subcn2 15502 risefallfac 15931 fallrisefac 15932 fallfac0 15935 binomrisefac 15949 efcan 16003 efne0OLD 16006 efneg 16007 efsub 16009 sinneg 16055 cosneg 16056 tanneg 16057 efmival 16062 sinhval 16063 coshval 16064 sinsub 16077 cossub 16078 sincossq 16085 cnaddablx 19747 cnaddabl 19748 cnaddinv 19750 cncrng 21295 cncrngOLD 21296 cnfldneg 21302 cnlmod 25038 cnstrcvs 25039 cncvs 25043 plyremlem 26210 reeff1o 26355 sin2pim 26392 cos2pim 26393 cxpsub 26589 cxpsqrt 26610 logrec 26671 asinlem3 26779 asinneg 26794 acosneg 26795 sinasin 26797 asinsin 26800 cosasin 26812 atantan 26831 cnaddabloOLD 30525 hvsubdistr2 30994 spanunsni 31523 ltflcei 37592 dvasin 37688 lcmineqlem1 42006 sqrtcvallem4 43616 sub2times 45259 cosknegpi 45854 etransclem18 46237 etransclem46 46265 addsubeq0 47284 altgsumbcALT 48341 1subrec1sub 48694 sinhpcosh 49729 |
| Copyright terms: Public domain | W3C validator |