MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1expcl2 Structured version   Visualization version   GIF version

Theorem m1expcl2 13732
Description: Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
m1expcl2 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})

Proof of Theorem m1expcl2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negex 11149 . . 3 -1 ∈ V
21prid1 4695 . 2 -1 ∈ {-1, 1}
3 neg1ne0 12019 . 2 -1 ≠ 0
4 neg1cn 12017 . . . 4 -1 ∈ ℂ
5 ax-1cn 10860 . . . 4 1 ∈ ℂ
6 prssi 4751 . . . 4 ((-1 ∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆ ℂ)
74, 5, 6mp2an 688 . . 3 {-1, 1} ⊆ ℂ
8 elpri 4580 . . . . 5 (𝑥 ∈ {-1, 1} → (𝑥 = -1 ∨ 𝑥 = 1))
97sseli 3913 . . . . . . . . 9 (𝑦 ∈ {-1, 1} → 𝑦 ∈ ℂ)
109mulm1d 11357 . . . . . . . 8 (𝑦 ∈ {-1, 1} → (-1 · 𝑦) = -𝑦)
11 elpri 4580 . . . . . . . . 9 (𝑦 ∈ {-1, 1} → (𝑦 = -1 ∨ 𝑦 = 1))
12 negeq 11143 . . . . . . . . . . 11 (𝑦 = -1 → -𝑦 = --1)
13 negneg1e1 12021 . . . . . . . . . . . 12 --1 = 1
14 1ex 10902 . . . . . . . . . . . . 13 1 ∈ V
1514prid2 4696 . . . . . . . . . . . 12 1 ∈ {-1, 1}
1613, 15eqeltri 2835 . . . . . . . . . . 11 --1 ∈ {-1, 1}
1712, 16eqeltrdi 2847 . . . . . . . . . 10 (𝑦 = -1 → -𝑦 ∈ {-1, 1})
18 negeq 11143 . . . . . . . . . . 11 (𝑦 = 1 → -𝑦 = -1)
1918, 2eqeltrdi 2847 . . . . . . . . . 10 (𝑦 = 1 → -𝑦 ∈ {-1, 1})
2017, 19jaoi 853 . . . . . . . . 9 ((𝑦 = -1 ∨ 𝑦 = 1) → -𝑦 ∈ {-1, 1})
2111, 20syl 17 . . . . . . . 8 (𝑦 ∈ {-1, 1} → -𝑦 ∈ {-1, 1})
2210, 21eqeltrd 2839 . . . . . . 7 (𝑦 ∈ {-1, 1} → (-1 · 𝑦) ∈ {-1, 1})
23 oveq1 7262 . . . . . . . 8 (𝑥 = -1 → (𝑥 · 𝑦) = (-1 · 𝑦))
2423eleq1d 2823 . . . . . . 7 (𝑥 = -1 → ((𝑥 · 𝑦) ∈ {-1, 1} ↔ (-1 · 𝑦) ∈ {-1, 1}))
2522, 24syl5ibr 245 . . . . . 6 (𝑥 = -1 → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
269mulid2d 10924 . . . . . . . 8 (𝑦 ∈ {-1, 1} → (1 · 𝑦) = 𝑦)
27 id 22 . . . . . . . 8 (𝑦 ∈ {-1, 1} → 𝑦 ∈ {-1, 1})
2826, 27eqeltrd 2839 . . . . . . 7 (𝑦 ∈ {-1, 1} → (1 · 𝑦) ∈ {-1, 1})
29 oveq1 7262 . . . . . . . 8 (𝑥 = 1 → (𝑥 · 𝑦) = (1 · 𝑦))
3029eleq1d 2823 . . . . . . 7 (𝑥 = 1 → ((𝑥 · 𝑦) ∈ {-1, 1} ↔ (1 · 𝑦) ∈ {-1, 1}))
3128, 30syl5ibr 245 . . . . . 6 (𝑥 = 1 → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
3225, 31jaoi 853 . . . . 5 ((𝑥 = -1 ∨ 𝑥 = 1) → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
338, 32syl 17 . . . 4 (𝑥 ∈ {-1, 1} → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
3433imp 406 . . 3 ((𝑥 ∈ {-1, 1} ∧ 𝑦 ∈ {-1, 1}) → (𝑥 · 𝑦) ∈ {-1, 1})
35 oveq2 7263 . . . . . . 7 (𝑥 = -1 → (1 / 𝑥) = (1 / -1))
36 ax-1ne0 10871 . . . . . . . . . 10 1 ≠ 0
37 divneg2 11629 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
385, 5, 36, 37mp3an 1459 . . . . . . . . 9 -(1 / 1) = (1 / -1)
39 1div1e1 11595 . . . . . . . . . 10 (1 / 1) = 1
4039negeqi 11144 . . . . . . . . 9 -(1 / 1) = -1
4138, 40eqtr3i 2768 . . . . . . . 8 (1 / -1) = -1
4241, 2eqeltri 2835 . . . . . . 7 (1 / -1) ∈ {-1, 1}
4335, 42eqeltrdi 2847 . . . . . 6 (𝑥 = -1 → (1 / 𝑥) ∈ {-1, 1})
44 oveq2 7263 . . . . . . 7 (𝑥 = 1 → (1 / 𝑥) = (1 / 1))
4539, 15eqeltri 2835 . . . . . . 7 (1 / 1) ∈ {-1, 1}
4644, 45eqeltrdi 2847 . . . . . 6 (𝑥 = 1 → (1 / 𝑥) ∈ {-1, 1})
4743, 46jaoi 853 . . . . 5 ((𝑥 = -1 ∨ 𝑥 = 1) → (1 / 𝑥) ∈ {-1, 1})
488, 47syl 17 . . . 4 (𝑥 ∈ {-1, 1} → (1 / 𝑥) ∈ {-1, 1})
4948adantr 480 . . 3 ((𝑥 ∈ {-1, 1} ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ {-1, 1})
507, 34, 15, 49expcl2lem 13722 . 2 ((-1 ∈ {-1, 1} ∧ -1 ≠ 0 ∧ 𝑁 ∈ ℤ) → (-1↑𝑁) ∈ {-1, 1})
512, 3, 50mp3an12 1449 1 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843   = wceq 1539  wcel 2108  wne 2942  wss 3883  {cpr 4560  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   · cmul 10807  -cneg 11136   / cdiv 11562  cz 12249  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by:  m1expcl  13733  m1expeven  13758  m1expaddsub  19021  psgnran  19038  psgnghm  20697  gausslemma2dlem0i  26417  lgseisenlem2  26429  madjusmdetlem4  31682  lighneallem4  44950
  Copyright terms: Public domain W3C validator