MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1expcl2 Structured version   Visualization version   GIF version

Theorem m1expcl2 14122
Description: Closure of integer exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
m1expcl2 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})

Proof of Theorem m1expcl2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negex 11503 . . 3 -1 ∈ V
21prid1 4766 . 2 -1 ∈ {-1, 1}
3 neg1ne0 12379 . 2 -1 ≠ 0
4 neg1cn 12377 . . . 4 -1 ∈ ℂ
5 ax-1cn 11210 . . . 4 1 ∈ ℂ
6 prssi 4825 . . . 4 ((-1 ∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆ ℂ)
74, 5, 6mp2an 692 . . 3 {-1, 1} ⊆ ℂ
8 elpri 4653 . . . . 5 (𝑥 ∈ {-1, 1} → (𝑥 = -1 ∨ 𝑥 = 1))
97sseli 3990 . . . . . . . . 9 (𝑦 ∈ {-1, 1} → 𝑦 ∈ ℂ)
109mulm1d 11712 . . . . . . . 8 (𝑦 ∈ {-1, 1} → (-1 · 𝑦) = -𝑦)
11 elpri 4653 . . . . . . . . 9 (𝑦 ∈ {-1, 1} → (𝑦 = -1 ∨ 𝑦 = 1))
12 negeq 11497 . . . . . . . . . . 11 (𝑦 = -1 → -𝑦 = --1)
13 negneg1e1 12381 . . . . . . . . . . . 12 --1 = 1
14 1ex 11254 . . . . . . . . . . . . 13 1 ∈ V
1514prid2 4767 . . . . . . . . . . . 12 1 ∈ {-1, 1}
1613, 15eqeltri 2834 . . . . . . . . . . 11 --1 ∈ {-1, 1}
1712, 16eqeltrdi 2846 . . . . . . . . . 10 (𝑦 = -1 → -𝑦 ∈ {-1, 1})
18 negeq 11497 . . . . . . . . . . 11 (𝑦 = 1 → -𝑦 = -1)
1918, 2eqeltrdi 2846 . . . . . . . . . 10 (𝑦 = 1 → -𝑦 ∈ {-1, 1})
2017, 19jaoi 857 . . . . . . . . 9 ((𝑦 = -1 ∨ 𝑦 = 1) → -𝑦 ∈ {-1, 1})
2111, 20syl 17 . . . . . . . 8 (𝑦 ∈ {-1, 1} → -𝑦 ∈ {-1, 1})
2210, 21eqeltrd 2838 . . . . . . 7 (𝑦 ∈ {-1, 1} → (-1 · 𝑦) ∈ {-1, 1})
23 oveq1 7437 . . . . . . . 8 (𝑥 = -1 → (𝑥 · 𝑦) = (-1 · 𝑦))
2423eleq1d 2823 . . . . . . 7 (𝑥 = -1 → ((𝑥 · 𝑦) ∈ {-1, 1} ↔ (-1 · 𝑦) ∈ {-1, 1}))
2522, 24imbitrrid 246 . . . . . 6 (𝑥 = -1 → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
269mullidd 11276 . . . . . . . 8 (𝑦 ∈ {-1, 1} → (1 · 𝑦) = 𝑦)
27 id 22 . . . . . . . 8 (𝑦 ∈ {-1, 1} → 𝑦 ∈ {-1, 1})
2826, 27eqeltrd 2838 . . . . . . 7 (𝑦 ∈ {-1, 1} → (1 · 𝑦) ∈ {-1, 1})
29 oveq1 7437 . . . . . . . 8 (𝑥 = 1 → (𝑥 · 𝑦) = (1 · 𝑦))
3029eleq1d 2823 . . . . . . 7 (𝑥 = 1 → ((𝑥 · 𝑦) ∈ {-1, 1} ↔ (1 · 𝑦) ∈ {-1, 1}))
3128, 30imbitrrid 246 . . . . . 6 (𝑥 = 1 → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
3225, 31jaoi 857 . . . . 5 ((𝑥 = -1 ∨ 𝑥 = 1) → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
338, 32syl 17 . . . 4 (𝑥 ∈ {-1, 1} → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
3433imp 406 . . 3 ((𝑥 ∈ {-1, 1} ∧ 𝑦 ∈ {-1, 1}) → (𝑥 · 𝑦) ∈ {-1, 1})
35 oveq2 7438 . . . . . . 7 (𝑥 = -1 → (1 / 𝑥) = (1 / -1))
36 ax-1ne0 11221 . . . . . . . . . 10 1 ≠ 0
37 divneg2 11988 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
385, 5, 36, 37mp3an 1460 . . . . . . . . 9 -(1 / 1) = (1 / -1)
39 1div1e1 11955 . . . . . . . . . 10 (1 / 1) = 1
4039negeqi 11498 . . . . . . . . 9 -(1 / 1) = -1
4138, 40eqtr3i 2764 . . . . . . . 8 (1 / -1) = -1
4241, 2eqeltri 2834 . . . . . . 7 (1 / -1) ∈ {-1, 1}
4335, 42eqeltrdi 2846 . . . . . 6 (𝑥 = -1 → (1 / 𝑥) ∈ {-1, 1})
44 oveq2 7438 . . . . . . 7 (𝑥 = 1 → (1 / 𝑥) = (1 / 1))
4539, 15eqeltri 2834 . . . . . . 7 (1 / 1) ∈ {-1, 1}
4644, 45eqeltrdi 2846 . . . . . 6 (𝑥 = 1 → (1 / 𝑥) ∈ {-1, 1})
4743, 46jaoi 857 . . . . 5 ((𝑥 = -1 ∨ 𝑥 = 1) → (1 / 𝑥) ∈ {-1, 1})
488, 47syl 17 . . . 4 (𝑥 ∈ {-1, 1} → (1 / 𝑥) ∈ {-1, 1})
4948adantr 480 . . 3 ((𝑥 ∈ {-1, 1} ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ {-1, 1})
507, 34, 15, 49expcl2lem 14110 . 2 ((-1 ∈ {-1, 1} ∧ -1 ≠ 0 ∧ 𝑁 ∈ ℤ) → (-1↑𝑁) ∈ {-1, 1})
512, 3, 50mp3an12 1450 1 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1536  wcel 2105  wne 2937  wss 3962  {cpr 4632  (class class class)co 7430  cc 11150  0cc0 11152  1c1 11153   · cmul 11157  -cneg 11490   / cdiv 11917  cz 12610  cexp 14098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-seq 14039  df-exp 14099
This theorem is referenced by:  m1expcl  14123  m1expeven  14146  m1expaddsub  19530  psgnran  19547  psgnghm  21615  gausslemma2dlem0i  27422  lgseisenlem2  27434  madjusmdetlem4  33790  lighneallem4  47534
  Copyright terms: Public domain W3C validator