MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1expcl2 Structured version   Visualization version   GIF version

Theorem m1expcl2 14046
Description: Closure of integer exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
m1expcl2 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})

Proof of Theorem m1expcl2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negex 11453 . . 3 -1 ∈ V
21prid1 4764 . 2 -1 ∈ {-1, 1}
3 neg1ne0 12323 . 2 -1 ≠ 0
4 neg1cn 12321 . . . 4 -1 ∈ ℂ
5 ax-1cn 11163 . . . 4 1 ∈ ℂ
6 prssi 4822 . . . 4 ((-1 ∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆ ℂ)
74, 5, 6mp2an 691 . . 3 {-1, 1} ⊆ ℂ
8 elpri 4648 . . . . 5 (𝑥 ∈ {-1, 1} → (𝑥 = -1 ∨ 𝑥 = 1))
97sseli 3976 . . . . . . . . 9 (𝑦 ∈ {-1, 1} → 𝑦 ∈ ℂ)
109mulm1d 11661 . . . . . . . 8 (𝑦 ∈ {-1, 1} → (-1 · 𝑦) = -𝑦)
11 elpri 4648 . . . . . . . . 9 (𝑦 ∈ {-1, 1} → (𝑦 = -1 ∨ 𝑦 = 1))
12 negeq 11447 . . . . . . . . . . 11 (𝑦 = -1 → -𝑦 = --1)
13 negneg1e1 12325 . . . . . . . . . . . 12 --1 = 1
14 1ex 11205 . . . . . . . . . . . . 13 1 ∈ V
1514prid2 4765 . . . . . . . . . . . 12 1 ∈ {-1, 1}
1613, 15eqeltri 2830 . . . . . . . . . . 11 --1 ∈ {-1, 1}
1712, 16eqeltrdi 2842 . . . . . . . . . 10 (𝑦 = -1 → -𝑦 ∈ {-1, 1})
18 negeq 11447 . . . . . . . . . . 11 (𝑦 = 1 → -𝑦 = -1)
1918, 2eqeltrdi 2842 . . . . . . . . . 10 (𝑦 = 1 → -𝑦 ∈ {-1, 1})
2017, 19jaoi 856 . . . . . . . . 9 ((𝑦 = -1 ∨ 𝑦 = 1) → -𝑦 ∈ {-1, 1})
2111, 20syl 17 . . . . . . . 8 (𝑦 ∈ {-1, 1} → -𝑦 ∈ {-1, 1})
2210, 21eqeltrd 2834 . . . . . . 7 (𝑦 ∈ {-1, 1} → (-1 · 𝑦) ∈ {-1, 1})
23 oveq1 7410 . . . . . . . 8 (𝑥 = -1 → (𝑥 · 𝑦) = (-1 · 𝑦))
2423eleq1d 2819 . . . . . . 7 (𝑥 = -1 → ((𝑥 · 𝑦) ∈ {-1, 1} ↔ (-1 · 𝑦) ∈ {-1, 1}))
2522, 24imbitrrid 245 . . . . . 6 (𝑥 = -1 → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
269mullidd 11227 . . . . . . . 8 (𝑦 ∈ {-1, 1} → (1 · 𝑦) = 𝑦)
27 id 22 . . . . . . . 8 (𝑦 ∈ {-1, 1} → 𝑦 ∈ {-1, 1})
2826, 27eqeltrd 2834 . . . . . . 7 (𝑦 ∈ {-1, 1} → (1 · 𝑦) ∈ {-1, 1})
29 oveq1 7410 . . . . . . . 8 (𝑥 = 1 → (𝑥 · 𝑦) = (1 · 𝑦))
3029eleq1d 2819 . . . . . . 7 (𝑥 = 1 → ((𝑥 · 𝑦) ∈ {-1, 1} ↔ (1 · 𝑦) ∈ {-1, 1}))
3128, 30imbitrrid 245 . . . . . 6 (𝑥 = 1 → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
3225, 31jaoi 856 . . . . 5 ((𝑥 = -1 ∨ 𝑥 = 1) → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
338, 32syl 17 . . . 4 (𝑥 ∈ {-1, 1} → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
3433imp 408 . . 3 ((𝑥 ∈ {-1, 1} ∧ 𝑦 ∈ {-1, 1}) → (𝑥 · 𝑦) ∈ {-1, 1})
35 oveq2 7411 . . . . . . 7 (𝑥 = -1 → (1 / 𝑥) = (1 / -1))
36 ax-1ne0 11174 . . . . . . . . . 10 1 ≠ 0
37 divneg2 11933 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
385, 5, 36, 37mp3an 1462 . . . . . . . . 9 -(1 / 1) = (1 / -1)
39 1div1e1 11899 . . . . . . . . . 10 (1 / 1) = 1
4039negeqi 11448 . . . . . . . . 9 -(1 / 1) = -1
4138, 40eqtr3i 2763 . . . . . . . 8 (1 / -1) = -1
4241, 2eqeltri 2830 . . . . . . 7 (1 / -1) ∈ {-1, 1}
4335, 42eqeltrdi 2842 . . . . . 6 (𝑥 = -1 → (1 / 𝑥) ∈ {-1, 1})
44 oveq2 7411 . . . . . . 7 (𝑥 = 1 → (1 / 𝑥) = (1 / 1))
4539, 15eqeltri 2830 . . . . . . 7 (1 / 1) ∈ {-1, 1}
4644, 45eqeltrdi 2842 . . . . . 6 (𝑥 = 1 → (1 / 𝑥) ∈ {-1, 1})
4743, 46jaoi 856 . . . . 5 ((𝑥 = -1 ∨ 𝑥 = 1) → (1 / 𝑥) ∈ {-1, 1})
488, 47syl 17 . . . 4 (𝑥 ∈ {-1, 1} → (1 / 𝑥) ∈ {-1, 1})
4948adantr 482 . . 3 ((𝑥 ∈ {-1, 1} ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ {-1, 1})
507, 34, 15, 49expcl2lem 14034 . 2 ((-1 ∈ {-1, 1} ∧ -1 ≠ 0 ∧ 𝑁 ∈ ℤ) → (-1↑𝑁) ∈ {-1, 1})
512, 3, 50mp3an12 1452 1 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846   = wceq 1542  wcel 2107  wne 2941  wss 3946  {cpr 4628  (class class class)co 7403  cc 11103  0cc0 11105  1c1 11106   · cmul 11110  -cneg 11440   / cdiv 11866  cz 12553  cexp 14022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-2nd 7970  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-div 11867  df-nn 12208  df-n0 12468  df-z 12554  df-uz 12818  df-seq 13962  df-exp 14023
This theorem is referenced by:  m1expcl  14047  m1expeven  14070  m1expaddsub  19358  psgnran  19375  psgnghm  21116  gausslemma2dlem0i  26846  lgseisenlem2  26858  madjusmdetlem4  32747  lighneallem4  46212
  Copyright terms: Public domain W3C validator