MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1expcl2 Structured version   Visualization version   GIF version

Theorem m1expcl2 14052
Description: Closure of integer exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
m1expcl2 (๐‘ โˆˆ โ„ค โ†’ (-1โ†‘๐‘) โˆˆ {-1, 1})

Proof of Theorem m1expcl2
Dummy variables ๐‘ฅ ๐‘ฆ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negex 11457 . . 3 -1 โˆˆ V
21prid1 4759 . 2 -1 โˆˆ {-1, 1}
3 neg1ne0 12327 . 2 -1 โ‰  0
4 neg1cn 12325 . . . 4 -1 โˆˆ โ„‚
5 ax-1cn 11165 . . . 4 1 โˆˆ โ„‚
6 prssi 4817 . . . 4 ((-1 โˆˆ โ„‚ โˆง 1 โˆˆ โ„‚) โ†’ {-1, 1} โІ โ„‚)
74, 5, 6mp2an 689 . . 3 {-1, 1} โІ โ„‚
8 elpri 4643 . . . . 5 (๐‘ฅ โˆˆ {-1, 1} โ†’ (๐‘ฅ = -1 โˆจ ๐‘ฅ = 1))
97sseli 3971 . . . . . . . . 9 (๐‘ฆ โˆˆ {-1, 1} โ†’ ๐‘ฆ โˆˆ โ„‚)
109mulm1d 11665 . . . . . . . 8 (๐‘ฆ โˆˆ {-1, 1} โ†’ (-1 ยท ๐‘ฆ) = -๐‘ฆ)
11 elpri 4643 . . . . . . . . 9 (๐‘ฆ โˆˆ {-1, 1} โ†’ (๐‘ฆ = -1 โˆจ ๐‘ฆ = 1))
12 negeq 11451 . . . . . . . . . . 11 (๐‘ฆ = -1 โ†’ -๐‘ฆ = --1)
13 negneg1e1 12329 . . . . . . . . . . . 12 --1 = 1
14 1ex 11209 . . . . . . . . . . . . 13 1 โˆˆ V
1514prid2 4760 . . . . . . . . . . . 12 1 โˆˆ {-1, 1}
1613, 15eqeltri 2821 . . . . . . . . . . 11 --1 โˆˆ {-1, 1}
1712, 16eqeltrdi 2833 . . . . . . . . . 10 (๐‘ฆ = -1 โ†’ -๐‘ฆ โˆˆ {-1, 1})
18 negeq 11451 . . . . . . . . . . 11 (๐‘ฆ = 1 โ†’ -๐‘ฆ = -1)
1918, 2eqeltrdi 2833 . . . . . . . . . 10 (๐‘ฆ = 1 โ†’ -๐‘ฆ โˆˆ {-1, 1})
2017, 19jaoi 854 . . . . . . . . 9 ((๐‘ฆ = -1 โˆจ ๐‘ฆ = 1) โ†’ -๐‘ฆ โˆˆ {-1, 1})
2111, 20syl 17 . . . . . . . 8 (๐‘ฆ โˆˆ {-1, 1} โ†’ -๐‘ฆ โˆˆ {-1, 1})
2210, 21eqeltrd 2825 . . . . . . 7 (๐‘ฆ โˆˆ {-1, 1} โ†’ (-1 ยท ๐‘ฆ) โˆˆ {-1, 1})
23 oveq1 7409 . . . . . . . 8 (๐‘ฅ = -1 โ†’ (๐‘ฅ ยท ๐‘ฆ) = (-1 ยท ๐‘ฆ))
2423eleq1d 2810 . . . . . . 7 (๐‘ฅ = -1 โ†’ ((๐‘ฅ ยท ๐‘ฆ) โˆˆ {-1, 1} โ†” (-1 ยท ๐‘ฆ) โˆˆ {-1, 1}))
2522, 24imbitrrid 245 . . . . . 6 (๐‘ฅ = -1 โ†’ (๐‘ฆ โˆˆ {-1, 1} โ†’ (๐‘ฅ ยท ๐‘ฆ) โˆˆ {-1, 1}))
269mullidd 11231 . . . . . . . 8 (๐‘ฆ โˆˆ {-1, 1} โ†’ (1 ยท ๐‘ฆ) = ๐‘ฆ)
27 id 22 . . . . . . . 8 (๐‘ฆ โˆˆ {-1, 1} โ†’ ๐‘ฆ โˆˆ {-1, 1})
2826, 27eqeltrd 2825 . . . . . . 7 (๐‘ฆ โˆˆ {-1, 1} โ†’ (1 ยท ๐‘ฆ) โˆˆ {-1, 1})
29 oveq1 7409 . . . . . . . 8 (๐‘ฅ = 1 โ†’ (๐‘ฅ ยท ๐‘ฆ) = (1 ยท ๐‘ฆ))
3029eleq1d 2810 . . . . . . 7 (๐‘ฅ = 1 โ†’ ((๐‘ฅ ยท ๐‘ฆ) โˆˆ {-1, 1} โ†” (1 ยท ๐‘ฆ) โˆˆ {-1, 1}))
3128, 30imbitrrid 245 . . . . . 6 (๐‘ฅ = 1 โ†’ (๐‘ฆ โˆˆ {-1, 1} โ†’ (๐‘ฅ ยท ๐‘ฆ) โˆˆ {-1, 1}))
3225, 31jaoi 854 . . . . 5 ((๐‘ฅ = -1 โˆจ ๐‘ฅ = 1) โ†’ (๐‘ฆ โˆˆ {-1, 1} โ†’ (๐‘ฅ ยท ๐‘ฆ) โˆˆ {-1, 1}))
338, 32syl 17 . . . 4 (๐‘ฅ โˆˆ {-1, 1} โ†’ (๐‘ฆ โˆˆ {-1, 1} โ†’ (๐‘ฅ ยท ๐‘ฆ) โˆˆ {-1, 1}))
3433imp 406 . . 3 ((๐‘ฅ โˆˆ {-1, 1} โˆง ๐‘ฆ โˆˆ {-1, 1}) โ†’ (๐‘ฅ ยท ๐‘ฆ) โˆˆ {-1, 1})
35 oveq2 7410 . . . . . . 7 (๐‘ฅ = -1 โ†’ (1 / ๐‘ฅ) = (1 / -1))
36 ax-1ne0 11176 . . . . . . . . . 10 1 โ‰  0
37 divneg2 11937 . . . . . . . . . 10 ((1 โˆˆ โ„‚ โˆง 1 โˆˆ โ„‚ โˆง 1 โ‰  0) โ†’ -(1 / 1) = (1 / -1))
385, 5, 36, 37mp3an 1457 . . . . . . . . 9 -(1 / 1) = (1 / -1)
39 1div1e1 11903 . . . . . . . . . 10 (1 / 1) = 1
4039negeqi 11452 . . . . . . . . 9 -(1 / 1) = -1
4138, 40eqtr3i 2754 . . . . . . . 8 (1 / -1) = -1
4241, 2eqeltri 2821 . . . . . . 7 (1 / -1) โˆˆ {-1, 1}
4335, 42eqeltrdi 2833 . . . . . 6 (๐‘ฅ = -1 โ†’ (1 / ๐‘ฅ) โˆˆ {-1, 1})
44 oveq2 7410 . . . . . . 7 (๐‘ฅ = 1 โ†’ (1 / ๐‘ฅ) = (1 / 1))
4539, 15eqeltri 2821 . . . . . . 7 (1 / 1) โˆˆ {-1, 1}
4644, 45eqeltrdi 2833 . . . . . 6 (๐‘ฅ = 1 โ†’ (1 / ๐‘ฅ) โˆˆ {-1, 1})
4743, 46jaoi 854 . . . . 5 ((๐‘ฅ = -1 โˆจ ๐‘ฅ = 1) โ†’ (1 / ๐‘ฅ) โˆˆ {-1, 1})
488, 47syl 17 . . . 4 (๐‘ฅ โˆˆ {-1, 1} โ†’ (1 / ๐‘ฅ) โˆˆ {-1, 1})
4948adantr 480 . . 3 ((๐‘ฅ โˆˆ {-1, 1} โˆง ๐‘ฅ โ‰  0) โ†’ (1 / ๐‘ฅ) โˆˆ {-1, 1})
507, 34, 15, 49expcl2lem 14040 . 2 ((-1 โˆˆ {-1, 1} โˆง -1 โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โ†’ (-1โ†‘๐‘) โˆˆ {-1, 1})
512, 3, 50mp3an12 1447 1 (๐‘ โˆˆ โ„ค โ†’ (-1โ†‘๐‘) โˆˆ {-1, 1})
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆจ wo 844   = wceq 1533   โˆˆ wcel 2098   โ‰  wne 2932   โІ wss 3941  {cpr 4623  (class class class)co 7402  โ„‚cc 11105  0cc0 11107  1c1 11108   ยท cmul 11112  -cneg 11444   / cdiv 11870  โ„คcz 12557  โ†‘cexp 14028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-seq 13968  df-exp 14029
This theorem is referenced by:  m1expcl  14053  m1expeven  14076  m1expaddsub  19414  psgnran  19431  psgnghm  21462  gausslemma2dlem0i  27238  lgseisenlem2  27250  madjusmdetlem4  33330  lighneallem4  46824
  Copyright terms: Public domain W3C validator