MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1expcl2 Structured version   Visualization version   GIF version

Theorem m1expcl2 13991
Description: Closure of integer exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
m1expcl2 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})

Proof of Theorem m1expcl2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negex 11399 . . 3 -1 ∈ V
21prid1 4723 . 2 -1 ∈ {-1, 1}
3 neg1ne0 12269 . 2 -1 ≠ 0
4 neg1cn 12267 . . . 4 -1 ∈ ℂ
5 ax-1cn 11109 . . . 4 1 ∈ ℂ
6 prssi 4781 . . . 4 ((-1 ∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆ ℂ)
74, 5, 6mp2an 690 . . 3 {-1, 1} ⊆ ℂ
8 elpri 4608 . . . . 5 (𝑥 ∈ {-1, 1} → (𝑥 = -1 ∨ 𝑥 = 1))
97sseli 3940 . . . . . . . . 9 (𝑦 ∈ {-1, 1} → 𝑦 ∈ ℂ)
109mulm1d 11607 . . . . . . . 8 (𝑦 ∈ {-1, 1} → (-1 · 𝑦) = -𝑦)
11 elpri 4608 . . . . . . . . 9 (𝑦 ∈ {-1, 1} → (𝑦 = -1 ∨ 𝑦 = 1))
12 negeq 11393 . . . . . . . . . . 11 (𝑦 = -1 → -𝑦 = --1)
13 negneg1e1 12271 . . . . . . . . . . . 12 --1 = 1
14 1ex 11151 . . . . . . . . . . . . 13 1 ∈ V
1514prid2 4724 . . . . . . . . . . . 12 1 ∈ {-1, 1}
1613, 15eqeltri 2834 . . . . . . . . . . 11 --1 ∈ {-1, 1}
1712, 16eqeltrdi 2846 . . . . . . . . . 10 (𝑦 = -1 → -𝑦 ∈ {-1, 1})
18 negeq 11393 . . . . . . . . . . 11 (𝑦 = 1 → -𝑦 = -1)
1918, 2eqeltrdi 2846 . . . . . . . . . 10 (𝑦 = 1 → -𝑦 ∈ {-1, 1})
2017, 19jaoi 855 . . . . . . . . 9 ((𝑦 = -1 ∨ 𝑦 = 1) → -𝑦 ∈ {-1, 1})
2111, 20syl 17 . . . . . . . 8 (𝑦 ∈ {-1, 1} → -𝑦 ∈ {-1, 1})
2210, 21eqeltrd 2838 . . . . . . 7 (𝑦 ∈ {-1, 1} → (-1 · 𝑦) ∈ {-1, 1})
23 oveq1 7364 . . . . . . . 8 (𝑥 = -1 → (𝑥 · 𝑦) = (-1 · 𝑦))
2423eleq1d 2822 . . . . . . 7 (𝑥 = -1 → ((𝑥 · 𝑦) ∈ {-1, 1} ↔ (-1 · 𝑦) ∈ {-1, 1}))
2522, 24syl5ibr 245 . . . . . 6 (𝑥 = -1 → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
269mulid2d 11173 . . . . . . . 8 (𝑦 ∈ {-1, 1} → (1 · 𝑦) = 𝑦)
27 id 22 . . . . . . . 8 (𝑦 ∈ {-1, 1} → 𝑦 ∈ {-1, 1})
2826, 27eqeltrd 2838 . . . . . . 7 (𝑦 ∈ {-1, 1} → (1 · 𝑦) ∈ {-1, 1})
29 oveq1 7364 . . . . . . . 8 (𝑥 = 1 → (𝑥 · 𝑦) = (1 · 𝑦))
3029eleq1d 2822 . . . . . . 7 (𝑥 = 1 → ((𝑥 · 𝑦) ∈ {-1, 1} ↔ (1 · 𝑦) ∈ {-1, 1}))
3128, 30syl5ibr 245 . . . . . 6 (𝑥 = 1 → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
3225, 31jaoi 855 . . . . 5 ((𝑥 = -1 ∨ 𝑥 = 1) → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
338, 32syl 17 . . . 4 (𝑥 ∈ {-1, 1} → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
3433imp 407 . . 3 ((𝑥 ∈ {-1, 1} ∧ 𝑦 ∈ {-1, 1}) → (𝑥 · 𝑦) ∈ {-1, 1})
35 oveq2 7365 . . . . . . 7 (𝑥 = -1 → (1 / 𝑥) = (1 / -1))
36 ax-1ne0 11120 . . . . . . . . . 10 1 ≠ 0
37 divneg2 11879 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
385, 5, 36, 37mp3an 1461 . . . . . . . . 9 -(1 / 1) = (1 / -1)
39 1div1e1 11845 . . . . . . . . . 10 (1 / 1) = 1
4039negeqi 11394 . . . . . . . . 9 -(1 / 1) = -1
4138, 40eqtr3i 2766 . . . . . . . 8 (1 / -1) = -1
4241, 2eqeltri 2834 . . . . . . 7 (1 / -1) ∈ {-1, 1}
4335, 42eqeltrdi 2846 . . . . . 6 (𝑥 = -1 → (1 / 𝑥) ∈ {-1, 1})
44 oveq2 7365 . . . . . . 7 (𝑥 = 1 → (1 / 𝑥) = (1 / 1))
4539, 15eqeltri 2834 . . . . . . 7 (1 / 1) ∈ {-1, 1}
4644, 45eqeltrdi 2846 . . . . . 6 (𝑥 = 1 → (1 / 𝑥) ∈ {-1, 1})
4743, 46jaoi 855 . . . . 5 ((𝑥 = -1 ∨ 𝑥 = 1) → (1 / 𝑥) ∈ {-1, 1})
488, 47syl 17 . . . 4 (𝑥 ∈ {-1, 1} → (1 / 𝑥) ∈ {-1, 1})
4948adantr 481 . . 3 ((𝑥 ∈ {-1, 1} ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ {-1, 1})
507, 34, 15, 49expcl2lem 13979 . 2 ((-1 ∈ {-1, 1} ∧ -1 ≠ 0 ∧ 𝑁 ∈ ℤ) → (-1↑𝑁) ∈ {-1, 1})
512, 3, 50mp3an12 1451 1 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 845   = wceq 1541  wcel 2106  wne 2943  wss 3910  {cpr 4588  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   · cmul 11056  -cneg 11386   / cdiv 11812  cz 12499  cexp 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-seq 13907  df-exp 13968
This theorem is referenced by:  m1expcl  13992  m1expeven  14015  m1expaddsub  19280  psgnran  19297  psgnghm  20984  gausslemma2dlem0i  26712  lgseisenlem2  26724  madjusmdetlem4  32411  lighneallem4  45792
  Copyright terms: Public domain W3C validator