Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proththd Structured version   Visualization version   GIF version

Theorem proththd 47738
Description: Proth's theorem (1878). If P is a Proth number, i.e. a number of the form k2^n+1 with k less than 2^n, and if there exists an integer x for which x^((P-1)/2) is -1 modulo P, then P is prime. Such a prime is called a Proth prime. Like Pocklington's theorem (see pockthg 16820), Proth's theorem allows for a convenient method for verifying large primes. (Contributed by AV, 5-Jul-2020.)
Hypotheses
Ref Expression
proththd.n (𝜑𝑁 ∈ ℕ)
proththd.k (𝜑𝐾 ∈ ℕ)
proththd.p (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
proththd.l (𝜑𝐾 < (2↑𝑁))
proththd.x (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
Assertion
Ref Expression
proththd (𝜑𝑃 ∈ ℙ)
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝜑,𝑥
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem proththd
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 2nn 12205 . . . 4 2 ∈ ℕ
21a1i 11 . . 3 (𝜑 → 2 ∈ ℕ)
3 proththd.n . . . 4 (𝜑𝑁 ∈ ℕ)
43nnnn0d 12449 . . 3 (𝜑𝑁 ∈ ℕ0)
52, 4nnexpcld 14154 . 2 (𝜑 → (2↑𝑁) ∈ ℕ)
6 proththd.k . 2 (𝜑𝐾 ∈ ℕ)
7 proththd.l . 2 (𝜑𝐾 < (2↑𝑁))
8 proththd.p . . 3 (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
96nncnd 12148 . . . . 5 (𝜑𝐾 ∈ ℂ)
105nncnd 12148 . . . . 5 (𝜑 → (2↑𝑁) ∈ ℂ)
119, 10mulcomd 11140 . . . 4 (𝜑 → (𝐾 · (2↑𝑁)) = ((2↑𝑁) · 𝐾))
1211oveq1d 7367 . . 3 (𝜑 → ((𝐾 · (2↑𝑁)) + 1) = (((2↑𝑁) · 𝐾) + 1))
138, 12eqtrd 2768 . 2 (𝜑𝑃 = (((2↑𝑁) · 𝐾) + 1))
14 simpr 484 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
15 2prm 16605 . . . . . 6 2 ∈ ℙ
1615a1i 11 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 2 ∈ ℙ)
173adantr 480 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
18 prmdvdsexpb 16629 . . . . 5 ((𝑝 ∈ ℙ ∧ 2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ (2↑𝑁) ↔ 𝑝 = 2))
1914, 16, 17, 18syl3anc 1373 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (2↑𝑁) ↔ 𝑝 = 2))
20 proththd.x . . . . . 6 (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
213, 6, 8proththdlem 47737 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ))
2221simp1d 1142 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 ∈ ℕ)
2322nncnd 12148 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℂ)
24 peano2cnm 11434 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℂ → (𝑃 − 1) ∈ ℂ)
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 − 1) ∈ ℂ)
2625adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℤ) → (𝑃 − 1) ∈ ℂ)
27 2cnd 12210 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℤ) → 2 ∈ ℂ)
28 2ne0 12236 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
2928a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℤ) → 2 ≠ 0)
3026, 27, 29divcan1d 11905 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℤ) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3130eqcomd 2739 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → (𝑃 − 1) = (((𝑃 − 1) / 2) · 2))
3231oveq2d 7368 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℤ) → (𝑥↑(𝑃 − 1)) = (𝑥↑(((𝑃 − 1) / 2) · 2)))
33 zcn 12480 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3433adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
35 2nn0 12405 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
3635a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → 2 ∈ ℕ0)
3721simp3d 1144 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
3837nnnn0d 12449 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
3938adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → ((𝑃 − 1) / 2) ∈ ℕ0)
4034, 36, 39expmuld 14058 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℤ) → (𝑥↑(((𝑃 − 1) / 2) · 2)) = ((𝑥↑((𝑃 − 1) / 2))↑2))
4132, 40eqtrd 2768 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℤ) → (𝑥↑(𝑃 − 1)) = ((𝑥↑((𝑃 − 1) / 2))↑2))
4241ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (𝑥↑(𝑃 − 1)) = ((𝑥↑((𝑃 − 1) / 2))↑2))
4342oveq1d 7367 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑(𝑃 − 1)) mod 𝑃) = (((𝑥↑((𝑃 − 1) / 2))↑2) mod 𝑃))
4438adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 = 2) → ((𝑃 − 1) / 2) ∈ ℕ0)
4544anim1i 615 . . . . . . . . . . . . . . 15 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (((𝑃 − 1) / 2) ∈ ℕ0𝑥 ∈ ℤ))
4645ancomd 461 . . . . . . . . . . . . . 14 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0))
47 zexpcl 13985 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝑥↑((𝑃 − 1) / 2)) ∈ ℤ)
4846, 47syl 17 . . . . . . . . . . . . 13 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥↑((𝑃 − 1) / 2)) ∈ ℤ)
4948adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (𝑥↑((𝑃 − 1) / 2)) ∈ ℤ)
5022nnrpd 12934 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℝ+)
5150ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → 𝑃 ∈ ℝ+)
5221simp2d 1143 . . . . . . . . . . . . 13 (𝜑 → 1 < 𝑃)
5352ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → 1 < 𝑃)
54 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
5549, 51, 53, 54modexp2m1d 47736 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑((𝑃 − 1) / 2))↑2) mod 𝑃) = 1)
5643, 55eqtrd 2768 . . . . . . . . . 10 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑(𝑃 − 1)) mod 𝑃) = 1)
57 oveq2 7360 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 2 → ((𝑃 − 1) / 𝑝) = ((𝑃 − 1) / 2))
5857eleq1d 2818 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 2 → (((𝑃 − 1) / 𝑝) ∈ ℕ0 ↔ ((𝑃 − 1) / 2) ∈ ℕ0))
5958adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 = 2) → (((𝑃 − 1) / 𝑝) ∈ ℕ0 ↔ ((𝑃 − 1) / 2) ∈ ℕ0))
6044, 59mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 = 2) → ((𝑃 − 1) / 𝑝) ∈ ℕ0)
6160anim2i 617 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ (𝜑𝑝 = 2)) → (𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 𝑝) ∈ ℕ0))
6261ancoms 458 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 𝑝) ∈ ℕ0))
63 zexpcl 13985 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 𝑝) ∈ ℕ0) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℤ)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℤ)
6564zred 12583 . . . . . . . . . . . . . 14 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℝ)
6665adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℝ)
67 1red 11120 . . . . . . . . . . . . . 14 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → 1 ∈ ℝ)
6867renegcld 11551 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → -1 ∈ ℝ)
69 oveq2 7360 . . . . . . . . . . . . . . . . . . . 20 (2 = 𝑝 → ((𝑃 − 1) / 2) = ((𝑃 − 1) / 𝑝))
7069eqcoms 2741 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 2 → ((𝑃 − 1) / 2) = ((𝑃 − 1) / 𝑝))
7170oveq2d 7368 . . . . . . . . . . . . . . . . . 18 (𝑝 = 2 → (𝑥↑((𝑃 − 1) / 2)) = (𝑥↑((𝑃 − 1) / 𝑝)))
7271oveq1d 7367 . . . . . . . . . . . . . . . . 17 (𝑝 = 2 → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃))
7372eqeq1d 2735 . . . . . . . . . . . . . . . 16 (𝑝 = 2 → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃)))
7473adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑝 = 2) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃)))
7574adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃)))
7675biimpa 476 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃))
77 eqidd 2734 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (1 mod 𝑃) = (1 mod 𝑃))
7866, 68, 67, 67, 51, 76, 77modsub12d 13837 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) = ((-1 − 1) mod 𝑃))
7978oveq1d 7367 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((-1 − 1) mod 𝑃) gcd 𝑃))
80 peano2zm 12521 . . . . . . . . . . . . . 14 ((𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℤ → ((𝑥↑((𝑃 − 1) / 𝑝)) − 1) ∈ ℤ)
8164, 80syl 17 . . . . . . . . . . . . 13 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → ((𝑥↑((𝑃 − 1) / 𝑝)) − 1) ∈ ℤ)
8222ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℕ)
83 modgcd 16445 . . . . . . . . . . . . 13 ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃))
8481, 82, 83syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃))
8584adantr 480 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃))
86 ax-1cn 11071 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
87 negdi2 11426 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → -(1 + 1) = (-1 − 1))
8887eqcomd 2739 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → (-1 − 1) = -(1 + 1))
8986, 86, 88mp2an 692 . . . . . . . . . . . . . . . . 17 (-1 − 1) = -(1 + 1)
90 1p1e2 12252 . . . . . . . . . . . . . . . . . 18 (1 + 1) = 2
9190negeqi 11360 . . . . . . . . . . . . . . . . 17 -(1 + 1) = -2
9289, 91eqtri 2756 . . . . . . . . . . . . . . . 16 (-1 − 1) = -2
9392a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (-1 − 1) = -2)
9493oveq1d 7367 . . . . . . . . . . . . . 14 (𝜑 → ((-1 − 1) mod 𝑃) = (-2 mod 𝑃))
9594oveq1d 7367 . . . . . . . . . . . . 13 (𝜑 → (((-1 − 1) mod 𝑃) gcd 𝑃) = ((-2 mod 𝑃) gcd 𝑃))
96 nnnegz 12478 . . . . . . . . . . . . . . . 16 (2 ∈ ℕ → -2 ∈ ℤ)
972, 96syl 17 . . . . . . . . . . . . . . 15 (𝜑 → -2 ∈ ℤ)
98 modgcd 16445 . . . . . . . . . . . . . . 15 ((-2 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((-2 mod 𝑃) gcd 𝑃) = (-2 gcd 𝑃))
9997, 22, 98syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((-2 mod 𝑃) gcd 𝑃) = (-2 gcd 𝑃))
100 2z 12510 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
10122nnzd 12501 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℤ)
102 neggcd 16436 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (-2 gcd 𝑃) = (2 gcd 𝑃))
103100, 101, 102sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (-2 gcd 𝑃) = (2 gcd 𝑃))
104 nnz 12496 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
105 oddm1d2 16273 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
107106biimprd 248 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) ∈ ℤ → ¬ 2 ∥ 𝑃))
108 nnz 12496 . . . . . . . . . . . . . . . . . . 19 (((𝑃 − 1) / 2) ∈ ℕ → ((𝑃 − 1) / 2) ∈ ℤ)
109107, 108impel 505 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → ¬ 2 ∥ 𝑃)
110 isoddgcd1 16644 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ (2 gcd 𝑃) = 1))
111104, 110syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 ↔ (2 gcd 𝑃) = 1))
112111adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (¬ 2 ∥ 𝑃 ↔ (2 gcd 𝑃) = 1))
113109, 112mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (2 gcd 𝑃) = 1)
1141133adant2 1131 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (2 gcd 𝑃) = 1)
11521, 114syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (2 gcd 𝑃) = 1)
116103, 115eqtrd 2768 . . . . . . . . . . . . . 14 (𝜑 → (-2 gcd 𝑃) = 1)
11799, 116eqtrd 2768 . . . . . . . . . . . . 13 (𝜑 → ((-2 mod 𝑃) gcd 𝑃) = 1)
11895, 117eqtrd 2768 . . . . . . . . . . . 12 (𝜑 → (((-1 − 1) mod 𝑃) gcd 𝑃) = 1)
119118ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((-1 − 1) mod 𝑃) gcd 𝑃) = 1)
12079, 85, 1193eqtr3d 2776 . . . . . . . . . 10 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)
12156, 120jca 511 . . . . . . . . 9 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1))
122121ex 412 . . . . . . . 8 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
123122reximdva 3146 . . . . . . 7 ((𝜑𝑝 = 2) → (∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
124123ex 412 . . . . . 6 (𝜑 → (𝑝 = 2 → (∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1))))
12520, 124mpid 44 . . . . 5 (𝜑 → (𝑝 = 2 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
126125adantr 480 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑝 = 2 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
12719, 126sylbid 240 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (2↑𝑁) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
128127ralrimiva 3125 . 2 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ (2↑𝑁) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
1295, 6, 7, 13, 128pockthg 16820 1 (𝜑𝑃 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057   class class class wbr 5093  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018   < clt 11153  cmin 11351  -cneg 11352   / cdiv 11781  cn 12132  2c2 12187  0cn0 12388  cz 12475  +crp 12892   mod cmo 13775  cexp 13970  cdvds 16165   gcd cgcd 16407  cprime 16584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-dvds 16166  df-gcd 16408  df-prm 16585  df-odz 16678  df-phi 16679  df-pc 16751
This theorem is referenced by:  41prothprm  47743
  Copyright terms: Public domain W3C validator