Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proththd Structured version   Visualization version   GIF version

Theorem proththd 45066
Description: Proth's theorem (1878). If P is a Proth number, i.e. a number of the form k2^n+1 with k less than 2^n, and if there exists an integer x for which x^((P-1)/2) is -1 modulo P, then P is prime. Such a prime is called a Proth prime. Like Pocklington's theorem (see pockthg 16607), Proth's theorem allows for a convenient method for verifying large primes. (Contributed by AV, 5-Jul-2020.)
Hypotheses
Ref Expression
proththd.n (𝜑𝑁 ∈ ℕ)
proththd.k (𝜑𝐾 ∈ ℕ)
proththd.p (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
proththd.l (𝜑𝐾 < (2↑𝑁))
proththd.x (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
Assertion
Ref Expression
proththd (𝜑𝑃 ∈ ℙ)
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝜑,𝑥
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem proththd
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 2nn 12046 . . . 4 2 ∈ ℕ
21a1i 11 . . 3 (𝜑 → 2 ∈ ℕ)
3 proththd.n . . . 4 (𝜑𝑁 ∈ ℕ)
43nnnn0d 12293 . . 3 (𝜑𝑁 ∈ ℕ0)
52, 4nnexpcld 13960 . 2 (𝜑 → (2↑𝑁) ∈ ℕ)
6 proththd.k . 2 (𝜑𝐾 ∈ ℕ)
7 proththd.l . 2 (𝜑𝐾 < (2↑𝑁))
8 proththd.p . . 3 (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
96nncnd 11989 . . . . 5 (𝜑𝐾 ∈ ℂ)
105nncnd 11989 . . . . 5 (𝜑 → (2↑𝑁) ∈ ℂ)
119, 10mulcomd 10996 . . . 4 (𝜑 → (𝐾 · (2↑𝑁)) = ((2↑𝑁) · 𝐾))
1211oveq1d 7290 . . 3 (𝜑 → ((𝐾 · (2↑𝑁)) + 1) = (((2↑𝑁) · 𝐾) + 1))
138, 12eqtrd 2778 . 2 (𝜑𝑃 = (((2↑𝑁) · 𝐾) + 1))
14 simpr 485 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
15 2prm 16397 . . . . . 6 2 ∈ ℙ
1615a1i 11 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 2 ∈ ℙ)
173adantr 481 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
18 prmdvdsexpb 16421 . . . . 5 ((𝑝 ∈ ℙ ∧ 2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ (2↑𝑁) ↔ 𝑝 = 2))
1914, 16, 17, 18syl3anc 1370 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (2↑𝑁) ↔ 𝑝 = 2))
20 proththd.x . . . . . 6 (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
213, 6, 8proththdlem 45065 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ))
2221simp1d 1141 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 ∈ ℕ)
2322nncnd 11989 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℂ)
24 peano2cnm 11287 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℂ → (𝑃 − 1) ∈ ℂ)
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 − 1) ∈ ℂ)
2625adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℤ) → (𝑃 − 1) ∈ ℂ)
27 2cnd 12051 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℤ) → 2 ∈ ℂ)
28 2ne0 12077 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
2928a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℤ) → 2 ≠ 0)
3026, 27, 29divcan1d 11752 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℤ) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3130eqcomd 2744 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → (𝑃 − 1) = (((𝑃 − 1) / 2) · 2))
3231oveq2d 7291 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℤ) → (𝑥↑(𝑃 − 1)) = (𝑥↑(((𝑃 − 1) / 2) · 2)))
33 zcn 12324 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3433adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
35 2nn0 12250 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
3635a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → 2 ∈ ℕ0)
3721simp3d 1143 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
3837nnnn0d 12293 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
3938adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → ((𝑃 − 1) / 2) ∈ ℕ0)
4034, 36, 39expmuld 13867 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℤ) → (𝑥↑(((𝑃 − 1) / 2) · 2)) = ((𝑥↑((𝑃 − 1) / 2))↑2))
4132, 40eqtrd 2778 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℤ) → (𝑥↑(𝑃 − 1)) = ((𝑥↑((𝑃 − 1) / 2))↑2))
4241ad4ant13 748 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (𝑥↑(𝑃 − 1)) = ((𝑥↑((𝑃 − 1) / 2))↑2))
4342oveq1d 7290 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑(𝑃 − 1)) mod 𝑃) = (((𝑥↑((𝑃 − 1) / 2))↑2) mod 𝑃))
4438adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 = 2) → ((𝑃 − 1) / 2) ∈ ℕ0)
4544anim1i 615 . . . . . . . . . . . . . . 15 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (((𝑃 − 1) / 2) ∈ ℕ0𝑥 ∈ ℤ))
4645ancomd 462 . . . . . . . . . . . . . 14 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0))
47 zexpcl 13797 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝑥↑((𝑃 − 1) / 2)) ∈ ℤ)
4846, 47syl 17 . . . . . . . . . . . . 13 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥↑((𝑃 − 1) / 2)) ∈ ℤ)
4948adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (𝑥↑((𝑃 − 1) / 2)) ∈ ℤ)
5022nnrpd 12770 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℝ+)
5150ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → 𝑃 ∈ ℝ+)
5221simp2d 1142 . . . . . . . . . . . . 13 (𝜑 → 1 < 𝑃)
5352ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → 1 < 𝑃)
54 simpr 485 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
5549, 51, 53, 54modexp2m1d 45064 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑((𝑃 − 1) / 2))↑2) mod 𝑃) = 1)
5643, 55eqtrd 2778 . . . . . . . . . 10 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑(𝑃 − 1)) mod 𝑃) = 1)
57 oveq2 7283 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 2 → ((𝑃 − 1) / 𝑝) = ((𝑃 − 1) / 2))
5857eleq1d 2823 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 2 → (((𝑃 − 1) / 𝑝) ∈ ℕ0 ↔ ((𝑃 − 1) / 2) ∈ ℕ0))
5958adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 = 2) → (((𝑃 − 1) / 𝑝) ∈ ℕ0 ↔ ((𝑃 − 1) / 2) ∈ ℕ0))
6044, 59mpbird 256 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 = 2) → ((𝑃 − 1) / 𝑝) ∈ ℕ0)
6160anim2i 617 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ (𝜑𝑝 = 2)) → (𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 𝑝) ∈ ℕ0))
6261ancoms 459 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 𝑝) ∈ ℕ0))
63 zexpcl 13797 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 𝑝) ∈ ℕ0) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℤ)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℤ)
6564zred 12426 . . . . . . . . . . . . . 14 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℝ)
6665adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℝ)
67 1red 10976 . . . . . . . . . . . . . 14 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → 1 ∈ ℝ)
6867renegcld 11402 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → -1 ∈ ℝ)
69 oveq2 7283 . . . . . . . . . . . . . . . . . . . 20 (2 = 𝑝 → ((𝑃 − 1) / 2) = ((𝑃 − 1) / 𝑝))
7069eqcoms 2746 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 2 → ((𝑃 − 1) / 2) = ((𝑃 − 1) / 𝑝))
7170oveq2d 7291 . . . . . . . . . . . . . . . . . 18 (𝑝 = 2 → (𝑥↑((𝑃 − 1) / 2)) = (𝑥↑((𝑃 − 1) / 𝑝)))
7271oveq1d 7290 . . . . . . . . . . . . . . . . 17 (𝑝 = 2 → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃))
7372eqeq1d 2740 . . . . . . . . . . . . . . . 16 (𝑝 = 2 → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃)))
7473adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑝 = 2) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃)))
7574adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃)))
7675biimpa 477 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃))
77 eqidd 2739 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (1 mod 𝑃) = (1 mod 𝑃))
7866, 68, 67, 67, 51, 76, 77modsub12d 13648 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) = ((-1 − 1) mod 𝑃))
7978oveq1d 7290 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((-1 − 1) mod 𝑃) gcd 𝑃))
80 peano2zm 12363 . . . . . . . . . . . . . 14 ((𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℤ → ((𝑥↑((𝑃 − 1) / 𝑝)) − 1) ∈ ℤ)
8164, 80syl 17 . . . . . . . . . . . . 13 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → ((𝑥↑((𝑃 − 1) / 𝑝)) − 1) ∈ ℤ)
8222ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℕ)
83 modgcd 16240 . . . . . . . . . . . . 13 ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃))
8481, 82, 83syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃))
8584adantr 481 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃))
86 ax-1cn 10929 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
87 negdi2 11279 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → -(1 + 1) = (-1 − 1))
8887eqcomd 2744 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → (-1 − 1) = -(1 + 1))
8986, 86, 88mp2an 689 . . . . . . . . . . . . . . . . 17 (-1 − 1) = -(1 + 1)
90 1p1e2 12098 . . . . . . . . . . . . . . . . . 18 (1 + 1) = 2
9190negeqi 11214 . . . . . . . . . . . . . . . . 17 -(1 + 1) = -2
9289, 91eqtri 2766 . . . . . . . . . . . . . . . 16 (-1 − 1) = -2
9392a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (-1 − 1) = -2)
9493oveq1d 7290 . . . . . . . . . . . . . 14 (𝜑 → ((-1 − 1) mod 𝑃) = (-2 mod 𝑃))
9594oveq1d 7290 . . . . . . . . . . . . 13 (𝜑 → (((-1 − 1) mod 𝑃) gcd 𝑃) = ((-2 mod 𝑃) gcd 𝑃))
96 nnnegz 12322 . . . . . . . . . . . . . . . 16 (2 ∈ ℕ → -2 ∈ ℤ)
972, 96syl 17 . . . . . . . . . . . . . . 15 (𝜑 → -2 ∈ ℤ)
98 modgcd 16240 . . . . . . . . . . . . . . 15 ((-2 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((-2 mod 𝑃) gcd 𝑃) = (-2 gcd 𝑃))
9997, 22, 98syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((-2 mod 𝑃) gcd 𝑃) = (-2 gcd 𝑃))
100 2z 12352 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
10122nnzd 12425 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℤ)
102 neggcd 16230 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (-2 gcd 𝑃) = (2 gcd 𝑃))
103100, 101, 102sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (-2 gcd 𝑃) = (2 gcd 𝑃))
104 nnz 12342 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
105 oddm1d2 16069 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
107106biimprd 247 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) ∈ ℤ → ¬ 2 ∥ 𝑃))
108 nnz 12342 . . . . . . . . . . . . . . . . . . 19 (((𝑃 − 1) / 2) ∈ ℕ → ((𝑃 − 1) / 2) ∈ ℤ)
109107, 108impel 506 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → ¬ 2 ∥ 𝑃)
110 isoddgcd1 16435 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ (2 gcd 𝑃) = 1))
111104, 110syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 ↔ (2 gcd 𝑃) = 1))
112111adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (¬ 2 ∥ 𝑃 ↔ (2 gcd 𝑃) = 1))
113109, 112mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (2 gcd 𝑃) = 1)
1141133adant2 1130 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (2 gcd 𝑃) = 1)
11521, 114syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (2 gcd 𝑃) = 1)
116103, 115eqtrd 2778 . . . . . . . . . . . . . 14 (𝜑 → (-2 gcd 𝑃) = 1)
11799, 116eqtrd 2778 . . . . . . . . . . . . 13 (𝜑 → ((-2 mod 𝑃) gcd 𝑃) = 1)
11895, 117eqtrd 2778 . . . . . . . . . . . 12 (𝜑 → (((-1 − 1) mod 𝑃) gcd 𝑃) = 1)
119118ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((-1 − 1) mod 𝑃) gcd 𝑃) = 1)
12079, 85, 1193eqtr3d 2786 . . . . . . . . . 10 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)
12156, 120jca 512 . . . . . . . . 9 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1))
122121ex 413 . . . . . . . 8 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
123122reximdva 3203 . . . . . . 7 ((𝜑𝑝 = 2) → (∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
124123ex 413 . . . . . 6 (𝜑 → (𝑝 = 2 → (∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1))))
12520, 124mpid 44 . . . . 5 (𝜑 → (𝑝 = 2 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
126125adantr 481 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑝 = 2 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
12719, 126sylbid 239 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (2↑𝑁) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
128127ralrimiva 3103 . 2 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ (2↑𝑁) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
1295, 6, 7, 13, 128pockthg 16607 1 (𝜑𝑃 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065   class class class wbr 5074  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  +crp 12730   mod cmo 13589  cexp 13782  cdvds 15963   gcd cgcd 16201  cprime 16376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-odz 16466  df-phi 16467  df-pc 16538
This theorem is referenced by:  41prothprm  45071
  Copyright terms: Public domain W3C validator