Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proththd Structured version   Visualization version   GIF version

Theorem proththd 42552
Description: Proth's theorem (1878). If P is a Proth number, i.e. a number of the form k2^n+1 with k less than 2^n, and if there exists an integer x for which x^((P-1)/2) is -1 modulo P, then P is prime. Such a prime is called a Proth prime. Like Pocklington's theorem (see pockthg 16014), Proth's theorem allows for a convenient method for verifying large primes. (Contributed by AV, 5-Jul-2020.)
Hypotheses
Ref Expression
proththd.n (𝜑𝑁 ∈ ℕ)
proththd.k (𝜑𝐾 ∈ ℕ)
proththd.p (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
proththd.l (𝜑𝐾 < (2↑𝑁))
proththd.x (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
Assertion
Ref Expression
proththd (𝜑𝑃 ∈ ℙ)
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝜑,𝑥
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem proththd
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 2nn 11448 . . . 4 2 ∈ ℕ
21a1i 11 . . 3 (𝜑 → 2 ∈ ℕ)
3 proththd.n . . . 4 (𝜑𝑁 ∈ ℕ)
43nnnn0d 11702 . . 3 (𝜑𝑁 ∈ ℕ0)
52, 4nnexpcld 13351 . 2 (𝜑 → (2↑𝑁) ∈ ℕ)
6 proththd.k . 2 (𝜑𝐾 ∈ ℕ)
7 proththd.l . 2 (𝜑𝐾 < (2↑𝑁))
8 proththd.p . . 3 (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
96nncnd 11392 . . . . 5 (𝜑𝐾 ∈ ℂ)
105nncnd 11392 . . . . 5 (𝜑 → (2↑𝑁) ∈ ℂ)
119, 10mulcomd 10398 . . . 4 (𝜑 → (𝐾 · (2↑𝑁)) = ((2↑𝑁) · 𝐾))
1211oveq1d 6937 . . 3 (𝜑 → ((𝐾 · (2↑𝑁)) + 1) = (((2↑𝑁) · 𝐾) + 1))
138, 12eqtrd 2814 . 2 (𝜑𝑃 = (((2↑𝑁) · 𝐾) + 1))
14 simpr 479 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
15 2prm 15810 . . . . . 6 2 ∈ ℙ
1615a1i 11 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 2 ∈ ℙ)
173adantr 474 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
18 prmdvdsexpb 15832 . . . . 5 ((𝑝 ∈ ℙ ∧ 2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ (2↑𝑁) ↔ 𝑝 = 2))
1914, 16, 17, 18syl3anc 1439 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (2↑𝑁) ↔ 𝑝 = 2))
20 proththd.x . . . . . 6 (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
213, 6, 8proththdlem 42551 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ))
2221simp1d 1133 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 ∈ ℕ)
2322nncnd 11392 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℂ)
24 peano2cnm 10689 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℂ → (𝑃 − 1) ∈ ℂ)
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 − 1) ∈ ℂ)
2625adantr 474 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℤ) → (𝑃 − 1) ∈ ℂ)
27 2cnd 11453 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℤ) → 2 ∈ ℂ)
28 2ne0 11486 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
2928a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℤ) → 2 ≠ 0)
3026, 27, 29divcan1d 11152 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℤ) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3130eqcomd 2784 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → (𝑃 − 1) = (((𝑃 − 1) / 2) · 2))
3231oveq2d 6938 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℤ) → (𝑥↑(𝑃 − 1)) = (𝑥↑(((𝑃 − 1) / 2) · 2)))
33 zcn 11733 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3433adantl 475 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
35 2nn0 11661 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
3635a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → 2 ∈ ℕ0)
3721simp3d 1135 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
3837nnnn0d 11702 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
3938adantr 474 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → ((𝑃 − 1) / 2) ∈ ℕ0)
4034, 36, 39expmuld 13330 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℤ) → (𝑥↑(((𝑃 − 1) / 2) · 2)) = ((𝑥↑((𝑃 − 1) / 2))↑2))
4132, 40eqtrd 2814 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℤ) → (𝑥↑(𝑃 − 1)) = ((𝑥↑((𝑃 − 1) / 2))↑2))
4241ad4ant13 741 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (𝑥↑(𝑃 − 1)) = ((𝑥↑((𝑃 − 1) / 2))↑2))
4342oveq1d 6937 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑(𝑃 − 1)) mod 𝑃) = (((𝑥↑((𝑃 − 1) / 2))↑2) mod 𝑃))
4438adantr 474 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 = 2) → ((𝑃 − 1) / 2) ∈ ℕ0)
4544anim1i 608 . . . . . . . . . . . . . . 15 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (((𝑃 − 1) / 2) ∈ ℕ0𝑥 ∈ ℤ))
4645ancomd 455 . . . . . . . . . . . . . 14 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0))
47 zexpcl 13193 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝑥↑((𝑃 − 1) / 2)) ∈ ℤ)
4846, 47syl 17 . . . . . . . . . . . . 13 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥↑((𝑃 − 1) / 2)) ∈ ℤ)
4948adantr 474 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (𝑥↑((𝑃 − 1) / 2)) ∈ ℤ)
5022nnrpd 12179 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℝ+)
5150ad3antrrr 720 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → 𝑃 ∈ ℝ+)
5221simp2d 1134 . . . . . . . . . . . . 13 (𝜑 → 1 < 𝑃)
5352ad3antrrr 720 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → 1 < 𝑃)
54 simpr 479 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
5549, 51, 53, 54modexp2m1d 42550 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑((𝑃 − 1) / 2))↑2) mod 𝑃) = 1)
5643, 55eqtrd 2814 . . . . . . . . . 10 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑(𝑃 − 1)) mod 𝑃) = 1)
57 oveq2 6930 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 2 → ((𝑃 − 1) / 𝑝) = ((𝑃 − 1) / 2))
5857eleq1d 2844 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 2 → (((𝑃 − 1) / 𝑝) ∈ ℕ0 ↔ ((𝑃 − 1) / 2) ∈ ℕ0))
5958adantl 475 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 = 2) → (((𝑃 − 1) / 𝑝) ∈ ℕ0 ↔ ((𝑃 − 1) / 2) ∈ ℕ0))
6044, 59mpbird 249 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 = 2) → ((𝑃 − 1) / 𝑝) ∈ ℕ0)
6160anim2i 610 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ (𝜑𝑝 = 2)) → (𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 𝑝) ∈ ℕ0))
6261ancoms 452 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 𝑝) ∈ ℕ0))
63 zexpcl 13193 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 𝑝) ∈ ℕ0) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℤ)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℤ)
6564zred 11834 . . . . . . . . . . . . . 14 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℝ)
6665adantr 474 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℝ)
67 1red 10377 . . . . . . . . . . . . . 14 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → 1 ∈ ℝ)
6867renegcld 10802 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → -1 ∈ ℝ)
69 oveq2 6930 . . . . . . . . . . . . . . . . . . . 20 (2 = 𝑝 → ((𝑃 − 1) / 2) = ((𝑃 − 1) / 𝑝))
7069eqcoms 2786 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 2 → ((𝑃 − 1) / 2) = ((𝑃 − 1) / 𝑝))
7170oveq2d 6938 . . . . . . . . . . . . . . . . . 18 (𝑝 = 2 → (𝑥↑((𝑃 − 1) / 2)) = (𝑥↑((𝑃 − 1) / 𝑝)))
7271oveq1d 6937 . . . . . . . . . . . . . . . . 17 (𝑝 = 2 → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃))
7372eqeq1d 2780 . . . . . . . . . . . . . . . 16 (𝑝 = 2 → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃)))
7473adantl 475 . . . . . . . . . . . . . . 15 ((𝜑𝑝 = 2) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃)))
7574adantr 474 . . . . . . . . . . . . . 14 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃)))
7675biimpa 470 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃))
77 eqidd 2779 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (1 mod 𝑃) = (1 mod 𝑃))
7866, 68, 67, 67, 51, 76, 77modsub12d 13046 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) = ((-1 − 1) mod 𝑃))
7978oveq1d 6937 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((-1 − 1) mod 𝑃) gcd 𝑃))
80 peano2zm 11772 . . . . . . . . . . . . . 14 ((𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℤ → ((𝑥↑((𝑃 − 1) / 𝑝)) − 1) ∈ ℤ)
8164, 80syl 17 . . . . . . . . . . . . 13 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → ((𝑥↑((𝑃 − 1) / 𝑝)) − 1) ∈ ℤ)
8222ad2antrr 716 . . . . . . . . . . . . 13 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℕ)
83 modgcd 15659 . . . . . . . . . . . . 13 ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃))
8481, 82, 83syl2anc 579 . . . . . . . . . . . 12 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃))
8584adantr 474 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃))
86 ax-1cn 10330 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
87 negdi2 10681 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → -(1 + 1) = (-1 − 1))
8887eqcomd 2784 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → (-1 − 1) = -(1 + 1))
8986, 86, 88mp2an 682 . . . . . . . . . . . . . . . . 17 (-1 − 1) = -(1 + 1)
90 1p1e2 11507 . . . . . . . . . . . . . . . . . 18 (1 + 1) = 2
9190negeqi 10615 . . . . . . . . . . . . . . . . 17 -(1 + 1) = -2
9289, 91eqtri 2802 . . . . . . . . . . . . . . . 16 (-1 − 1) = -2
9392a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (-1 − 1) = -2)
9493oveq1d 6937 . . . . . . . . . . . . . 14 (𝜑 → ((-1 − 1) mod 𝑃) = (-2 mod 𝑃))
9594oveq1d 6937 . . . . . . . . . . . . 13 (𝜑 → (((-1 − 1) mod 𝑃) gcd 𝑃) = ((-2 mod 𝑃) gcd 𝑃))
96 nnnegz 11731 . . . . . . . . . . . . . . . 16 (2 ∈ ℕ → -2 ∈ ℤ)
972, 96syl 17 . . . . . . . . . . . . . . 15 (𝜑 → -2 ∈ ℤ)
98 modgcd 15659 . . . . . . . . . . . . . . 15 ((-2 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((-2 mod 𝑃) gcd 𝑃) = (-2 gcd 𝑃))
9997, 22, 98syl2anc 579 . . . . . . . . . . . . . 14 (𝜑 → ((-2 mod 𝑃) gcd 𝑃) = (-2 gcd 𝑃))
100 2z 11761 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
10122nnzd 11833 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℤ)
102 neggcd 15650 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (-2 gcd 𝑃) = (2 gcd 𝑃))
103100, 101, 102sylancr 581 . . . . . . . . . . . . . . 15 (𝜑 → (-2 gcd 𝑃) = (2 gcd 𝑃))
104 nnz 11751 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
105 oddm1d2 15488 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
107106biimprd 240 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) ∈ ℤ → ¬ 2 ∥ 𝑃))
108 nnz 11751 . . . . . . . . . . . . . . . . . . 19 (((𝑃 − 1) / 2) ∈ ℕ → ((𝑃 − 1) / 2) ∈ ℤ)
109107, 108impel 501 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → ¬ 2 ∥ 𝑃)
110 isoddgcd1 15843 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ (2 gcd 𝑃) = 1))
111104, 110syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 ↔ (2 gcd 𝑃) = 1))
112111adantr 474 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (¬ 2 ∥ 𝑃 ↔ (2 gcd 𝑃) = 1))
113109, 112mpbid 224 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (2 gcd 𝑃) = 1)
1141133adant2 1122 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (2 gcd 𝑃) = 1)
11521, 114syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (2 gcd 𝑃) = 1)
116103, 115eqtrd 2814 . . . . . . . . . . . . . 14 (𝜑 → (-2 gcd 𝑃) = 1)
11799, 116eqtrd 2814 . . . . . . . . . . . . 13 (𝜑 → ((-2 mod 𝑃) gcd 𝑃) = 1)
11895, 117eqtrd 2814 . . . . . . . . . . . 12 (𝜑 → (((-1 − 1) mod 𝑃) gcd 𝑃) = 1)
119118ad3antrrr 720 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((-1 − 1) mod 𝑃) gcd 𝑃) = 1)
12079, 85, 1193eqtr3d 2822 . . . . . . . . . 10 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)
12156, 120jca 507 . . . . . . . . 9 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1))
122121ex 403 . . . . . . . 8 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
123122reximdva 3198 . . . . . . 7 ((𝜑𝑝 = 2) → (∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
124123ex 403 . . . . . 6 (𝜑 → (𝑝 = 2 → (∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1))))
12520, 124mpid 44 . . . . 5 (𝜑 → (𝑝 = 2 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
126125adantr 474 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑝 = 2 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
12719, 126sylbid 232 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (2↑𝑁) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
128127ralrimiva 3148 . 2 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ (2↑𝑁) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
1295, 6, 7, 13, 128pockthg 16014 1 (𝜑𝑃 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  wrex 3091   class class class wbr 4886  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277   < clt 10411  cmin 10606  -cneg 10607   / cdiv 11032  cn 11374  2c2 11430  0cn0 11642  cz 11728  +crp 12137   mod cmo 12987  cexp 13178  cdvds 15387   gcd cgcd 15622  cprime 15790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-xnn0 11715  df-z 11729  df-uz 11993  df-q 12096  df-rp 12138  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-dvds 15388  df-gcd 15623  df-prm 15791  df-odz 15874  df-phi 15875  df-pc 15946
This theorem is referenced by:  41prothprm  42557
  Copyright terms: Public domain W3C validator